Report No: P WMA 19/G10/00/2413/5



### Department of Water Affairs Directorate: Options Analysis

### PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

### REPORT No.3 – VOLUME 1 Berg River-Voëlvlei Augmentation Scheme

## APPENDIX No.1

## Updating of the Western Cape Water Supply System Analysis for the Berg River Voelvlëi Augmentation Scheme



December 2012

#### STUDY REPORT LIST

| REPORT<br>No | REPORT TITLE             | REPORT TITLE VOLUME No. |                         | VOLUME TITLE                                                                                            |
|--------------|--------------------------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------|
|              |                          |                         |                         | Riverine Environmental Water Requirements                                                               |
|              |                          |                         |                         | Appendix 1: EWR data for the Breede River                                                               |
|              |                          |                         | PWMA19                  | Appendix 2: EWR data for the Palmiet River                                                              |
|              |                          | Vol 1                   | G10/00/2413/1           | Appendix 3: EWR data for the Berg River                                                                 |
|              |                          |                         |                         | Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers |
|              |                          |                         |                         | Appendix 5: Habitat Integrity Report – Breede River                                                     |
|              |                          |                         |                         | Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary                |
|              |                          | Vol 2                   | PWMA19<br>G10/00/2413/2 | Appendix A: Summary of data available for the RDM investigations undertaken during 2007 and 2008        |
|              | ECOLOGICAL               |                         | 010/00/2413/2           | Appendix B: Summary of baseline data requirements and the long-<br>term monitoring programme            |
| 1            | WATER<br>REQUIREMENT     |                         |                         | Appendix C: Abiotic Specialist Report                                                                   |
|              | ASSESSMENTS              |                         |                         | Berg Estuary Environmental Water Requirements                                                           |
|              |                          |                         |                         | Appendix A: Available information and data                                                              |
|              |                          |                         |                         | Appendix B: Measurement of streamflows in the Lower Berg<br>downstream of Misverstand Dam               |
|              |                          |                         |                         | Appendix C: Specialist Report – Physical dynamics and water<br>quality                                  |
|              |                          | Vol 3                   | PWMA19<br>G10/00/2413/3 | Appendix D: Specialist Report – Modelling                                                               |
|              |                          |                         | G 10/00/24 13/3         | Appendix E: Specialist Report – Microalgae                                                              |
|              |                          |                         |                         | Appendix F: Specialist Report – Invertebrates                                                           |
|              |                          |                         |                         | Appendix G: Specialist Report – Fish                                                                    |
|              |                          |                         |                         | Appendix H: Specialist Report – Birds                                                                   |
|              |                          |                         |                         | Appendix I: Specialist Report – The economic value of the Berg<br>River Estuary                         |
|              |                          |                         |                         | Appendix 1: Scheme Yield Assessments and Diversion Functions                                            |
|              |                          |                         |                         | Appendix 2: Unit Reference Value Calculation Sheets                                                     |
|              |                          |                         |                         | Appendix 3: Yield Analysis and Dam Size Optimization                                                    |
|              | PRELIMINARY              |                         |                         | Appendix 4: Dam Design Inputs                                                                           |
| 2            | ASSESSMENT<br>OF OPTIONS |                         | PWMA19<br>G10/00/2413/4 | Appendix 5: Diversion Weir Layout Drawings                                                              |
|              |                          |                         |                         | Appendix 6: Voëlvlei Dam Water Quality Assessment                                                       |
|              |                          |                         |                         | Appendix 7: Botanical Considerations                                                                    |
|              |                          |                         |                         | Appendix 8: Heritage Considerations                                                                     |
|              |                          |                         |                         | Appendix 9: Agricultural Economic Considerations                                                        |

#### STUDY REPORT LIST (cntd)

| REPORT<br>No | REPORT TITLE                             | VOLUME<br>No. | DWA<br>REPORT<br>No.    | VOLUME TITLE                                                                                                                                                                        |
|--------------|------------------------------------------|---------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                          |               |                         | Berg River-Voëlvlei Augmentation Scheme                                                                                                                                             |
|              |                                          |               |                         | Appendix 1: Updating of the Western Cape Water Supply System<br>Analysis for the Berg River-Voëlvlei Augmentation Scheme                                                            |
|              |                                          | Vol 1         | PWMA19                  | Appendix 2: Configuration, Calibration and Application of the CE-<br>QUAL-W2 model to Voëlvlei Dam for the Berg River-Voëlvlei<br>Augmentation Scheme                               |
|              |                                          |               | G10/00/2413/5           | Appendix 3: Monitoring Water Quality During Flood Events in the Middle Berg River (Winter 2011), for the Berg River-Voëlvlei Augmentation Scheme                                    |
|              |                                          |               |                         | Appendix 4: Dispersion Modelling in Voëlvlei Dam from Berg River<br>Water Transfers for the Berg River-Voëlvlei Augmentation Scheme                                                 |
|              |                                          |               |                         | Appendix 7 - 12: See list under Volume 2 below                                                                                                                                      |
|              |                                          |               |                         | Breede-Berg (Michell's Pass) Water Transfer Scheme                                                                                                                                  |
|              |                                          |               |                         | Appendix 5: Scheme Operation and Yield Analyses with Ecological<br>Flow Requirements for the Breede-Berg (Michell's Pass) Water<br>Transfer Scheme                                  |
| 3            | FEASIBILITY<br>STUDIES                   |               | PWMA19<br>G10/00/2413/6 | Appendix 6: Preliminary Design of Papenkuils Pump Station<br>Upgrade and Pre-Feasibility Design of the Boontjies Dam, for the<br>Breede-Berg (Michell's Pass) Water Transfer Scheme |
|              |                                          |               |                         | Appendix 7: Ecological Water Requirements Assessment Summary<br>for the Berg River-Voëlvlei Augmentation Scheme, and the Breede<br>Berg (Michell's Pass) Water Transfer Scheme      |
|              |                                          | Vol 2         |                         | Appendix 8: Geotechnical Investigations for the Berg River-Voëlvlei<br>Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water<br>Transfer Scheme                           |
|              |                                          |               |                         | Appendix 9: LiDAR Aerial Survey, for the Berg River-Voëlvlei<br>Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water<br>Transfer Scheme                                  |
|              |                                          |               |                         | Appendix 10: Conveyance Infrastructure Design Report, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme                   |
|              |                                          |               |                         | Appendix 11: Diversion Weirs Design for the Berg River-Voëlvlei<br>Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water<br>Transfer Scheme                               |
|              |                                          |               |                         | Appendix 12: Cost Estimates for the Berg River-Voëlvlei<br>Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water<br>Transfer Scheme                                       |
| 4            | RECORD OF<br>IMPLEMENTATION<br>DECISIONS | ON            | PWMA19<br>G10/00/2413/7 |                                                                                                                                                                                     |

#### STUDY REPORT MATRIX DIAGRAM



RECORD OF IMPLEMENTATION DECISIONS PWMA19 G10/00/2413/7

н

# Contents

| 1                               | REVIEW OF THEEWATERSKLOOF DAM NATURALISED INFLOW SEQUENCE                                                                                             | 1              |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2                               | UNPACKING THE DIFFERENCE BETWEEN THE HFY AND THE 1:50 STOCHASTIC<br>YIELD FOR THE UPDATED WCWSS MODEL                                                 | 7              |
| 3                               | REVIEW OF INEFFICIENCIES OF THE OPERATION OF KLEINPLAAS DAM ON THE JONKERSHOEK RIVER                                                                  | 9              |
| 4                               | FINER DISCRETIZATION OF NATURAL STREAMFLOWS, IRRIGATION DEMANDS,<br>LUMPED FARM DAMS AND TRANSMISSION LOSSES IN THE BERG RIVER                        | 11             |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | Natural streamflows<br>Irrigation demands<br>Comparison of Irrigation Water Requirements - current study versus WAAS<br>Farm dam capacities<br>Losses | 13<br>18<br>22 |
| 5                               | EFFECT OF THE PROPOSED PRELIMINARY RESERVE ON THE YIELD OF THE<br>BERG RIVER DAM AND SUPPLEMENT SCHEME                                                | 25             |
| 5.1<br>5.2<br>5.3               | Synopsis<br>Introduction<br>Comparison of streamflows downstream of the Supplement Scheme and effects of different operating                          | . 25           |
|                                 | rules on yield                                                                                                                                        | 21             |

# Index of Figures

| Figure 1:  | Mass balance components for the Theewaterskloof Dam 2                                                        |
|------------|--------------------------------------------------------------------------------------------------------------|
| Figure 2   | Different Periods that make up of the streamflow record at Theewaterskloof Dam                               |
| Figure 3:  | Verification of transfers from Theewaterskloof into the Riviersonderend Tunnel                               |
| Figure 4:  | Ratio of measured annual inflow to the combined streamflows from H6H007 and H6H008                           |
|            | located upstream                                                                                             |
| Figure 5:  | Comparison of annual streamflows measured at Theewaterskloof with the combined                               |
|            | streamflows of the upstream gauges H6H007 and H6H0085                                                        |
| Figure 6:  | Capacity/yield comparison of the historical and stochastic time series for the                               |
|            | Theewaterskloof Dam incremental catchment (based on 41 sets of stochastic streamflow                         |
|            | sequences)                                                                                                   |
| Figure 7:  | Inflows(blue), Measured Spills (red) and Modelled / Theoretical Spills (black) at Kleinplaas                 |
|            | Dam                                                                                                          |
| Figure 8:  | Relationship of average monthly Inflows (blue) (m <sup>3</sup> /s) to average monthly Measured Spills        |
|            | (red) (m <sup>3</sup> /s) and Modelled / Theoretical Spills (black) (m <sup>3</sup> /s) at Kleinplaas Dam 10 |
| Figure 9:  | Streamflow gauges and EWR sites 14                                                                           |
| Figure 10: | Irrigation in Sub-Catchments upstream of EWR Sites 15                                                        |
| Figure 11: | Major Irrigation Schemes and application rates (m <sup>3</sup> /ha/annum) along the Berg River 16            |
| Figure 12: | Sub-catchments used in the WAAS Study 17                                                                     |
| Figure 13: | Comparison of EWRs and simulated average monthly streamflows from May to October                             |
|            | downstream of the Supplement Site                                                                            |
| Figure 14: | Relationship of upstream streamflow to downstream streamflow assuming a threshold of                         |
|            | 0.7 m <sup>3</sup> /s and three pumping steps of 1.5 m <sup>3</sup> /s 29                                    |
| Figure 15: | Required baseflows and actual streamflows downstream of the Supplement Scheme for                            |
|            | different implementations of the EWR                                                                         |

## Index of Tables

| Simulated versus Observed Streamflows at Theewaterskloof Dam                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation of the difference between the historical and stochastic yields for the                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Updated WCWSS Model (based on 41 sets of stochastic streamflow sequences)                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relationship of Monthly Inflow (m <sup>3</sup> /s) to Monthly Spillage (m <sup>3</sup> /s) at Kleinplaas Dam | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Allocating WAAS catchments upstream of farm dams to subcatchments upstream of                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EWR nodes, which are defined at a finer resolution                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Irrigation demands by major reaches - current study versus WAAS (million m <sup>3</sup> /a)                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Estimating breakdown of irrigation areas into areas supplied from farm dams,                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| catchment streamflows, Upper Berg IB allocation and Lower Berg IB allocation                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Refining Upper Berg IB areas according to the scheduled areas and estimates of                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| proportion of the scheduled areas used in different reaches. Estimating Irrigation                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Volumes supplied from different sources.                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Aggregating irrigation volumes into channels for the WRYM. Determine scaling                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| factors to apply to WAAS irrigation demands                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| adjust the volumes and surface areas of the lumped farm dams from WAAS                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Average Monthly Evaporation (mm) at G1E002:S01                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reach characteristics used to determine the transmission losses downstream of                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Adopted variable baseflow threshold                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mass balance for the critical period from 1 November 1968 to 31 May 1974 to                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Comparison of required and modelled streamflows (m <sup>3</sup> /s) for the period 1928-1988                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| using different methods of operating the Supplement Abstraction                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                              | Evaluation of the difference between the historical and stochastic yields for the<br>Updated WCWSS Model (based on 41 sets of stochastic streamflow sequences)<br>Relationship of Monthly Inflow (m <sup>3</sup> /s) to Monthly Spillage (m <sup>3</sup> /s) at Kleinplaas Dam<br>Allocating WAAS catchments upstream of farm dams to subcatchments upstream of<br>EWR nodes, which are defined at a finer resolution<br>Irrigation demands by major reaches - current study versus WAAS (million m <sup>3</sup> /a)<br>Estimating breakdown of irrigation areas into areas supplied from farm dams,<br>catchment streamflows, Upper Berg IB allocation and Lower Berg IB allocation<br>Refining Upper Berg IB areas according to the scheduled areas and estimates of<br>proportion of the scheduled areas used in different reaches. Estimating Irrigation<br>Volumes supplied from different sources.<br>Aggregating irrigation volumes into channels for the WRYM. Determine scaling<br>factors to apply to WAAS irrigation demands |

P:\Projects\402812 WC Feasibility Studies\REPORTS\Appendices\1-Berg System Analysis\Appendix 1-BRVAS Hydrology System Analysis.docx

### 1 Review of Theewaterskloof Dam Naturalised Inflow Sequence

The evaporation and rainfall input data for Theewaterskloof Dam was reviewed, in recognition of the dam's large surface area of approximately 50 km<sup>2</sup> and the following adjustments were made:

1

- Evaporation The evaporation for Theewaterskloof was selected from the average of the three driest consecutive years recorded at Theewaterskloof, namely 1981 to 1983, as this will more accurately represent the behaviour of the dam during the dry critical drawdown period.
- Mean Annual Rainfall The WAAS study erroneously used the average mean annual rainfall of the Theewaterskloof Basin, rather than the rainfall at the Dam itself, which is significantly less. During the current study the rainfall value represents the rainfall at the Dam itself.

During the WAAS study a careful assessment was made of the streamflows entering Theewaterskloof Dam to obtain a representative sequence. The sequence selected nevertheless results in higher stochastic than historical yields as is explained below.

During the WAAS study a careful assessment was made of the various streamflow records related to the Theewaterskloof Dam site. The historical observed streamflow record at Theewaterskloof Dam comes from a number of different sources of varying degrees of reliability. Initially a gauge, H6H003, was constructed upstream of the (then) proposed dam and this was used for about 6 years (Oct 1967-May 1974) until it was submerged during the construction of Theewaterskloof Dam. The latter period happened to be one of the driest on record. The WAAS interpretation was that this gauge had underrecorded the high streamflows, leading to depressed simulated inflows and yields during the WCSA and the later Berg River Dam Feasibility Study. The naturalised inflow sequence finally derived during WAAS results in markedly higher stochastic than historical firm yields. In this study, this work was reviewed in detail and the WAAS findings were fully confirmed.

After submergence of H6H003, a new gauge, H6H012, was constructed downstream of Theewaterskloof Dam to measure releases and spills from the Dam. The bulk transfers to Cape Town, the Berg River Irrigation Board and the Wemmershoek WTW through the Riviersondend Tunnel, the abstractions by the Vyeboom Irrigation Board from the Dam and the evaporation and rainfall on the Dam surface need to be taken into account to determine the inflow into the dam.

After construction of the Dam the inflow to the Dam was determined by a "reverse mass balance" calculation. Over any time period, say one month, the inflow into dam is determined from:

- Change in storage in the dam (H6R001) plus
- Abstractions from the Dam (G1H053 + G1H054 + G1H055 + H6H020 ) plus
- Spills/Releases from the Dam (H6H012) plus
- Net evaporation from the Dam (H6E001-P01 for precipitation and H6E001-E01 for evaporation).

The locations of the different gauges are shown schematically in **Figure 1** while **Figure 2** shows the streamflow measuring periods for each different approach.

The accuracy of this derived inflow sequence for the Dam is highly dependent on the accuracy of the individual components of the reverse mass balance. The major component for Theewaterskloof is the transfer into the Riviersonderend Tunnel and comprises about 45% of the total. Unfortunately, while this measurement may be reasonably accurate, it is very difficult to check. **Figure 3** compares the

Scheme Operation and Yield Analysis

reported transfer/ from the Tunnel with the outflows from the Tunnel. In isolated hydrological years (1987, 1991, 2002, 2003 and 2004) the correspondence is good, but in others it is poor, likely as a result of errors in the other measurements besides G1H053.

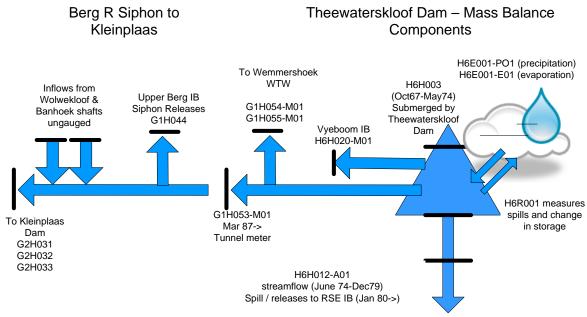
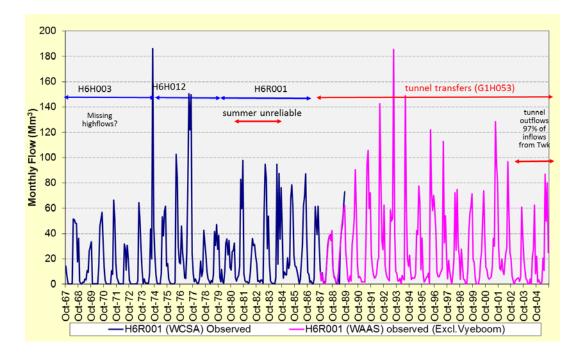
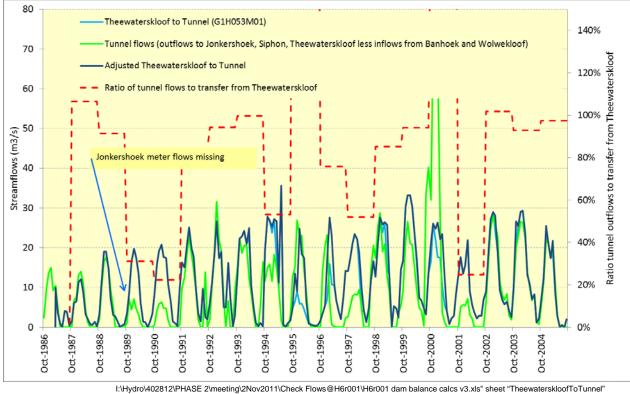
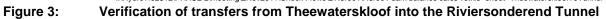






Figure 1: Mass balance components for the Theewaterskloof Dam



#### Figure 2 Different Periods that make up of the streamflow record at Theewaterskloof Dam





A calibrated rainfall-runoff model can provide an independent check of the streamflow measurements, in that a rainfall sequence is used to estimate the runoff from a catchment and this can be compared with the observed streamflows. Obviously rainfall records can also be faulty, but when the streamflow simulated from rainfall and the observed streamflow for any selected period agree it helps to confirm the accuracy of the streamflow gauge for that period, or vice versa.

The observed streamflows and the simulated streamflows developed during the WCSA and the WAAS study are compared for the different periods in **Table 1**. During the period 1967 to 1974, the simulated streamflows from both the WCSA (196 million  $m^3/a$ ) and WAAS (237 million  $m^3/a$ ) studies are larger than the observed streamflows at H6H003 (179 million  $m^3/a$ ), indicating that gauge H6H003 under-recorded high streamflows.

|                 | Period                      |                | (             | Observ        | /ed      |                | Simula         | ted                    |       | simulated | d to   |
|-----------------|-----------------------------|----------------|---------------|---------------|----------|----------------|----------------|------------------------|-------|-----------|--------|
|                 |                             | а              | b             | С             | c*0.79   | е              | f              | g=f-e                  | h=e/b | i=f/b c   | or f/c |
| Dates           | Description                 | no wet seasons | WCSA observed | WAAS observed | 97% WAAS | WCSA simulated | WAAS simulated | Diff in simulated MARs | WCSA  | WAAS      |        |
| Oct 67 - May 74 | H6H003 (before submergence) | 6              | 179           |               |          | 196            | 237            | 41                     | 109%  | 132%      |        |
| Jun74 - Dec 79  | H6H012 ds dam               | 5              | 371           |               |          | 371            | 419            | 48                     | 100%  | 113%      |        |
| Jan80 - Sep 89  |                             | 9              | 319           |               |          | 280            | 331            | 50                     | 88%   | 104%      |        |
| Oct89 - Sep 02  | Theewaterskloof Dam         | 12             |               | 380           |          |                | 331            |                        |       | 87%       | 95%    |
| Oct02 - Sep 05  |                             | 3              |               | 206           | 200      |                | 203            |                        |       | 99%       |        |
| Oct28 - Sep 89  | Long term simulated record  | 61             |               |               |          | 274            | 312            | 38                     |       |           |        |

| Table 1     | Simulated versus | <b>Observed Streamflo</b> | ws at Theewaterskloof Dam |
|-------------|------------------|---------------------------|---------------------------|
| 1 4 6 1 6 1 |                  |                           |                           |

In the later periods, which may arguably have better streamflow records if the Tunnel meter G1H053 is sufficiently accurate, the simulated sequences for both WCSA and WAAS are less than the observed streamflows. For instance, in the WCSA study the simulated streamflows over the period January 1980 to September 1989 are 88% of the observed streamflows. Had the WCSA ignored the period prior to 1979 and calibrated the model on the period from January 1980 to September 1989, then the streamflows generated would have been about markedly higher. Similarly, in the WAAS study, the simulated streamflows averaged over the period from January 1980 to September 2005 are 95% of the observed streamflows.

4

The composite record of streamflows at the Theewaterskloof Dam site was also compared with two upstream gauges to identify trends. **Figure 4** depicts the ratio of recorded annual streamflow at Theewaterskloof to the combined annual streamflows from H6H007 and H6H008 located upstream. During the period prior to 1974 the ratio is less than afterwards, suggesting that the streamflows at Theewaterskloof are under-recorded during that period.

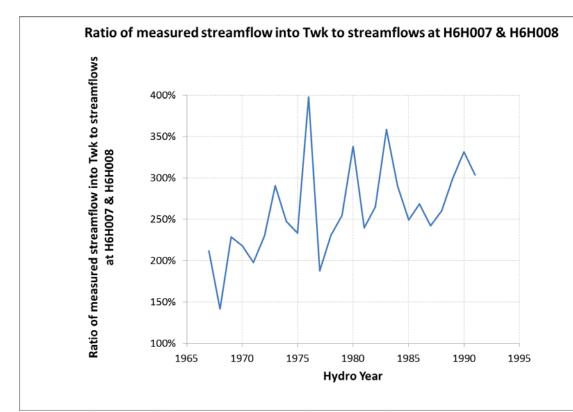



Figure 4: Ratio of measured annual inflow to the combined streamflows from H6H007 and H6H008 located upstream

The area upstream of H6H007 and H6H008 is mountainous with a higher MAP than the area between those gauges and the Theewaterskloof Dam site. The period prior to 1974 was a drought period and during such periods it is possible that the lower rainfall areas such as that around the Dam may experience a larger decrease in runoff than the higher mountainous areas upstream of gauges H6H007 and H6H006. To check the effect of MAP on the ratio of the streamflows at Theewaterskloof to the streamflows at gauges H6H007 and H6H008, the ratio was plotted as a function of annual rainfall rather than hydrological year in **Figure 5**. This diagram confirms that the ratio is sensitive to the annual rainfall and increases as the annual rainfall increases. However, if a line is fitted to the points from 1968 to 1974 and another line is fitted to the points from 1975 to 1991, then the line for the earlier period lies well below that from the latter period. The difference is about 12%, which equates to about 40 million m<sup>3</sup>/a for a Theewaterskloof MAR of about 300 million m<sup>3</sup>/a (see **Table 1**).

This analysis also confirms that streamflows at the Dam site were under-recorded for the period from 1968 to 1974.

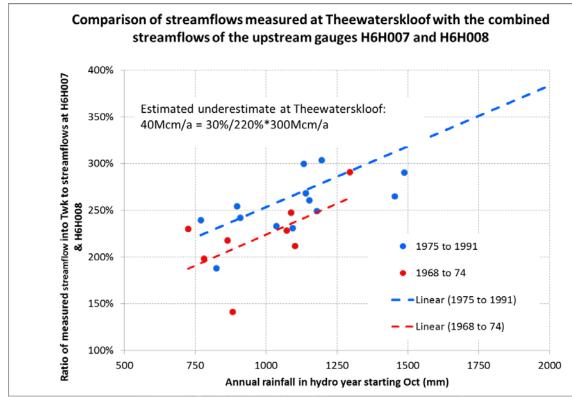



Figure 5: Comparison of annual streamflows measured at Theewaterskloof with the combined streamflows of the upstream gauges H6H007 and H6H008

The Theewaterskloof streamflow sequence used in WAAS was obtained by splicing together the simulated natural sequence for the period prior to 1967 with the observed record post-1967, which had first been naturalised. The critical period in this sequence occurs during 1968 to 1974, which also corresponds with the period when the streamflows were probably under-recorded.

The GENTEST program outputs allow a further perspective on this matter: **Figure 6** indicates that the stochastic yields for the incremental sub-catchment downstream of gauges H6H007 and H6H008 and Elandskloof Dam are larger than the corresponding historical firm yield over a wide range of dam capacities. For example, for a hypothetical dam capacity of 100% MAR, the historical firm yield (blue line) is given as 60% of the MAR while the median stochastic yield (green line) is 70% of the MAR. This offers further support for the view that the embedded drought sequence was quite likely underrecorded.

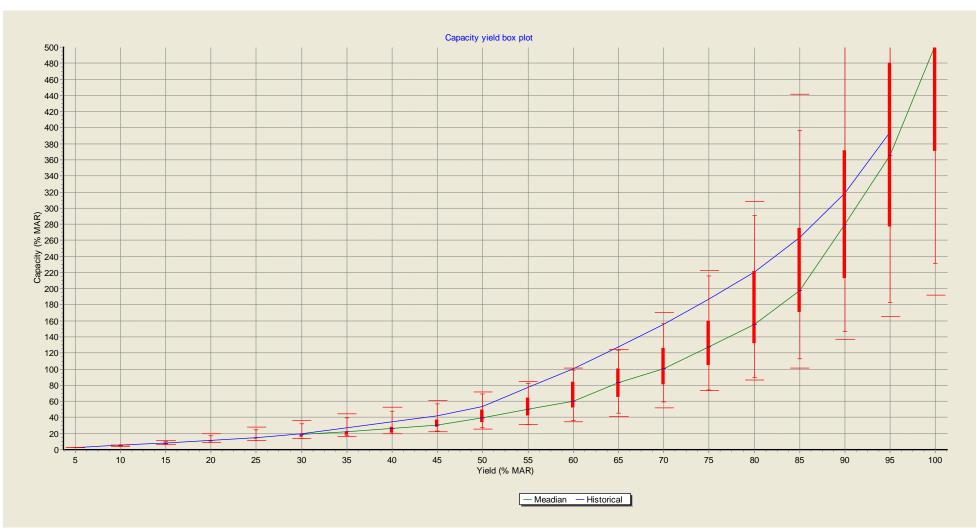



Figure 6: Capacity/yield comparison of the historical and stochastic time series for the Theewaterskloof Dam incremental catchment (based on 41 sets of stochastic streamflow sequences).

6

# 2 Unpacking the difference between the HFY and the 1:50 stochastic yield for the Updated WCWSS Model

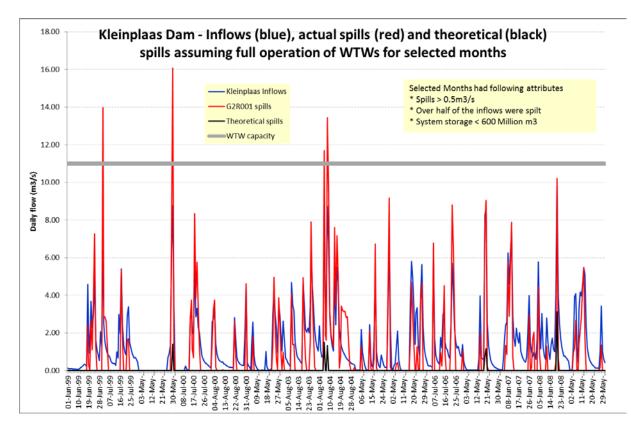
In the Main Report on the BRVAS Feasibility Study it is reported that the historical firm yield (HFY) of the fully updated and refined WCWSS model, incorporating the WAAS naturalised streamflow sequences, is 529 million m<sup>3</sup>/a. The 1:50 year stochastic yield of the fully updated, refined and integrated WCWSS model, incorporating the WAAS naturalised streamflow sequences, is 579 million m<sup>3</sup>/a. In order to evaluate the veracity of this yield difference the incremental yields of the incremental sub-systems of the WCWSS were inspected in great detail, as follows:

GENTEST-generated box-whisker plots and curves comparing the stochastic and historical firm yields were prepared for each of the incremental sub-system in the WCWSS (using 41 sets of stochastic streamflow sequences). The results are presented in **Table 2**.

Column "d" in **Table 2** gives the ratio of storage to MAR used when the sub-systems operate separately and column "n" gives the ratio of storage to MAR for the system if the sub-systems are operated in an approximately integrated manner. A scaling factor was determined so that the historical firm yields from applying the ratios from the Yield/MAR curves match the historical firm yields from the WRYM modelling for the separate and integrated cases (columns "j" and "t"). The same scaling factor was applied to the stochastic yields for each of the cases in column "I" and "t".

**Table 2** shows that the accumulated sub-system median stochastic yields for the entire system would be about 26 million  $m^3/a$  more than the historical firm yields if the sub-systems operated separately, while that difference increases to 30 million  $m^3/a$ , if the system operated in an approximately integrated manner. This difference, based on the stochastic medians, is substantial and verifies that the difference in the 1:50 year stochastic yield and the HFY for fully updated, refined and integrated WCWSS model is to be expected.

|                            |         |       |             |             |                                        |        |                                                           | Separate sub-systems                                   |          |       |                               |                               | Approximate Integrated system |             |                                        |                 |                                                           |                                                                         |        |                                           |
|----------------------------|---------|-------|-------------|-------------|----------------------------------------|--------|-----------------------------------------------------------|--------------------------------------------------------|----------|-------|-------------------------------|-------------------------------|-------------------------------|-------------|----------------------------------------|-----------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------|-------------------------------------------|
| Incremental Sub-Systems    |         | MA    | Rs          | G           | atios from<br>ENTEST<br>/MAR curves    | and st | ated historical<br>ochastic yields<br>n GENTEST<br>curves | Actual simulated<br>HFYs taking<br>environmental       | Fraction |       | le yields to n                | natch HFYs                    | Storage                       | G           | atios from<br>ENTEST<br>MAR curves     | and sto<br>from | ated historical<br>ochastic yields<br>o GENTEST<br>curves | Actual simulated<br>HFYs taking                                         |        | e yields to<br>tch HFYs                   |
|                            | Storage | MAR   | Storage/MAR | HFY/<br>MAR | Median<br>Stochastic<br>Yield /<br>MAR | HFY    | Median<br>Stochastic<br>yield                             | releases and<br>diversion efficiencies<br>into account |          | HFY   | Median<br>Stochastic<br>yield | Median<br>Stochastic -<br>HFY | MAR                           | HFY/<br>MAR | Median<br>Stochastic<br>Yield /<br>MAR | HFY             | Median<br>Stochastic<br>yield                             | environmental<br>releases and<br>diversion efficiencies<br>into account | factor | Median<br>Stochastic -<br>HFY<br>(scaled) |
| column a                   | b       | С     | d           | е           | f                                      | g=c*e  | h=c*f                                                     | i                                                      | j=i/g    | k=g*j | l=h*j                         | m                             | n                             | 0           | р                                      | q=e*o           | r=e*p                                                     | S                                                                       | t=s/q  | t=(r-q)*s                                 |
| Theewaterskloof            | 431     |       |             |             |                                        |        |                                                           |                                                        |          |       |                               |                               |                               |             |                                        |                 |                                                           |                                                                         |        |                                           |
| h6r02gw                    |         | 22.0  |             | 75%         | 78%                                    | 17     | 17                                                        |                                                        |          |       |                               |                               |                               | 70%         | 74%                                    | 15              | 16                                                        |                                                                         |        | 1                                         |
| H6INCGW                    |         | 191.9 | 136%        | 67%         | 78%                                    | 129    | 150                                                       |                                                        |          |       |                               |                               |                               | 60%         | 70%                                    | 115             | 134                                                       |                                                                         |        | 17                                        |
| H6SONGW                    |         | 64.3  | 130%        | 89%         | 91%                                    | 57     | 59                                                        |                                                        |          |       |                               |                               |                               | 83%         | 86%                                    | 53              | 55                                                        |                                                                         |        | 2                                         |
| H6DUTGW                    |         | 38.7  |             | 81%         | 82%                                    | 31     | 32                                                        |                                                        |          |       |                               |                               |                               | 72%         | 72%                                    | 28              | 28                                                        |                                                                         |        | 0                                         |
| sub-total                  |         | 316.9 |             |             |                                        | 234    | 257                                                       | 216                                                    | 92%      | 216   | 238                           | 22                            |                               |             |                                        | 211             | 233                                                       |                                                                         |        |                                           |
| Wemmershoek                | 58.5    |       | 79%         |             |                                        |        |                                                           |                                                        |          |       |                               |                               |                               |             |                                        |                 |                                                           |                                                                         |        |                                           |
| g1r02-d                    |         | 74.1  | 79%         | 71%         | 74%                                    | 53     | 55                                                        |                                                        |          |       |                               |                               |                               | 75%         | 78%                                    | 55              | 57                                                        |                                                                         |        | 2                                         |
| sub-total                  |         | 74.1  |             |             |                                        | 53     | 55                                                        | 51                                                     | 97%      | 51    | 53                            | 2                             |                               |             |                                        | 55              | 57                                                        |                                                                         |        |                                           |
| BRD                        | 122.2   |       |             |             |                                        |        |                                                           |                                                        |          |       |                               |                               |                               |             |                                        |                 |                                                           |                                                                         |        |                                           |
| g1h04a-s                   |         | 84.8  |             | 74%         | 77%                                    | 63     | 65                                                        |                                                        |          |       |                               |                               |                               | 76%         | 78%                                    | 64              | 66                                                        |                                                                         |        | 1                                         |
| g1h04b-s                   |         | 27.4  | 0.50/       | 75%         | 77%                                    | 21     | 21                                                        |                                                        |          |       |                               |                               |                               | 76%         | 78%                                    | 21              | 21                                                        |                                                                         |        | 0                                         |
| q1h38-s                    |         | 24.6  | 85%         | 75%         | 77%                                    | 18     | 19                                                        |                                                        |          |       |                               |                               |                               | 76%         | 78%                                    | 19              | 19                                                        |                                                                         |        | 0                                         |
| g1skf-d                    |         | 6.2   |             | 57%         | 59%                                    | 4      | 4                                                         |                                                        |          |       |                               |                               |                               | 60%         | 61%                                    | 4               | 4                                                         |                                                                         |        | 0                                         |
| sub-total                  |         | 143.1 |             |             |                                        | 105    | 109                                                       | 87                                                     | 83%      | 87    | 90                            | 3                             | 98%                           |             |                                        | 108             | 110                                                       |                                                                         |        |                                           |
| Voelvlei                   | 150.7   |       |             |             |                                        |        |                                                           |                                                        |          |       |                               |                               |                               |             |                                        |                 |                                                           |                                                                         |        |                                           |
| q1h08-d                    |         | 29.3  |             | 55%         | 55%                                    | 16     | 16                                                        |                                                        |          |       |                               |                               |                               | 62%         | 62%                                    | 18              | 18                                                        |                                                                         |        | 0                                         |
| g1h08-s                    |         | 54.9  |             | 67%         | 70%                                    | 37     | 38                                                        |                                                        |          |       |                               |                               |                               | 73%         | 76%                                    | 40              | 42                                                        |                                                                         |        | 1                                         |
| g1h28-s                    |         | 125.5 | 64%         | 75%         | 72%                                    | 94     | 90                                                        |                                                        |          |       |                               |                               |                               | 79%         | 83%                                    | 99              | 104                                                       |                                                                         |        | 4                                         |
| g1h29-s                    |         | 21.5  |             | 71%         | 73%                                    | 15     | 16                                                        |                                                        |          |       |                               |                               |                               | 81%         | 81%                                    | 17              | 17                                                        |                                                                         |        | 0                                         |
| g1r01-d                    |         | 2.5   | 1           | 61%         | 59%                                    | 2      | 1                                                         |                                                        |          |       |                               |                               | 1                             | 67%         | 65%                                    | 2               | 2                                                         |                                                                         |        | 0                                         |
| sub-total                  |         | 233.8 | 1           |             |                                        | 164    | 161                                                       | 99                                                     | 61%      | 99    | 98                            | -1                            | 1                             |             |                                        | 176             | 183                                                       |                                                                         |        |                                           |
| Steenbras Upper            | 30.0    |       | 000/        |             |                                        |        |                                                           |                                                        |          |       |                               |                               | 1                             |             |                                        |                 |                                                           |                                                                         |        |                                           |
| Steenbras Lower            | 33.9    |       | 89%         |             |                                        |        |                                                           |                                                        |          |       |                               |                               |                               |             |                                        |                 |                                                           |                                                                         |        |                                           |
| q4r01-s                    |         | 47.2  |             | 82%         | 85%                                    | 38     | 40                                                        |                                                        |          |       |                               |                               | 1                             | 82%         | 86%                                    | 39              | 41                                                        |                                                                         |        | 2                                         |
| Palmiet (g4h05-s) - scaled |         |       |             |             | 0.40/                                  |        | 40                                                        |                                                        |          |       |                               |                               | 1                             | 87%         | 050/                                   |                 | 24                                                        |                                                                         |        | 0                                         |
| to average transfer        |         | 24.5  |             | 86%         | 84%                                    | 41     | 40                                                        |                                                        |          |       |                               |                               |                               | 81%         | 85%                                    | 21              | 21                                                        |                                                                         |        | 0                                         |
| sub-total                  |         | 71.7  |             |             |                                        | 79     | 80                                                        | 62                                                     | 78%      | 62    | 63                            | 1                             |                               |             |                                        | 60              | 61                                                        |                                                                         |        |                                           |
| Total                      | 826.2   | 839.5 | 98%         |             |                                        | 634    | 662                                                       | 515                                                    |          |       |                               | 26                            |                               |             |                                        | 611             | 646                                                       | 529                                                                     | 87%    | 30                                        |


# Table 2: Evaluation of the difference between the historical and stochastic yields for the Updated WCWSS Model (based on 41 sets of stochastic streamflow sequences)

## 3 Review of Inefficiencies of the Operation of Kleinplaas Dam on the Jonkershoek River

The spillage at Kleinplaas was investigated in more detail, comparing the actual spillage with the theoretical for the period 1999 to 2010 – illustrated in **Figure 7** and **Figure 8**. In theory, Kleinplaas should have very little spillage given the large abstraction capacity of the pipelines supplying the 400 Ml/d Blackheath and 500 Ml/d Faure WTWs. In practice, the abstraction capacity is affected by:

- the closure of the WTWS for maintenance
- the reduced water requirement during winter
- the need to increase the abstraction from other dams which might be at risk of spillage during winter.

The behaviour of the Water Resources Yield Model (WRYM) at Faure was adjusted to reflect the historical spillage at the dam, rather than the theoretically possible abstraction by using the diversion function in **Table 3** to model the spills. This exercise indicates that the system yield will increase by up to 9 million  $m^3/a$  if the Jonkershoek inflows were intercepted rather than allowed to spill.



# Figure 7: Inflows(blue), Measured Spills (red) and Modelled / Theoretical Spills (black) at Kleinplaas Dam

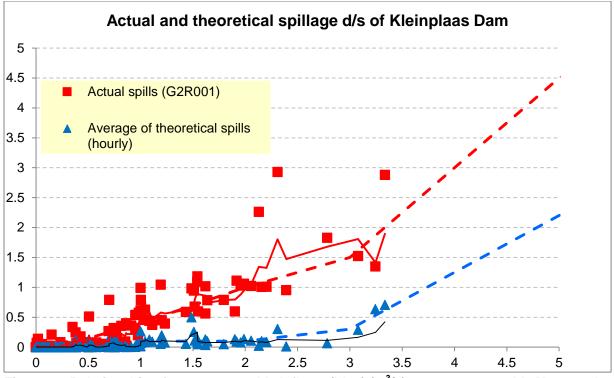



Figure 8: Relationship of average monthly Inflows (blue) (m<sup>3</sup>/s) to average monthly Measured Spills (red) (m<sup>3</sup>/s) and Modelled / Theoretical Spills (black) (m<sup>3</sup>/s) at Kleinplaas Dam

| Table 3: Relationship of Monthly Inflow (m³/s) to Monthly Spillage (m³/s) at Kleinplaas Dam | Table 3: Relationship of Monthly Inflow (m <sup>3</sup> | <sup>3</sup> /s) to Monthly Spillage (m | <sup>3</sup> /s) at Kleinplaas Dam |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------|
|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------|

| Inflow (m <sup>3</sup> /s)               | 0 | 0.4 | 1   | 2   | 3   | 5   | 99 |
|------------------------------------------|---|-----|-----|-----|-----|-----|----|
| Fitted spill (actual)                    | 0 | 0.1 | 0.4 | 1   | 1.5 | 3.5 | 99 |
| Theoretical reduced spill (hourly model) | 0 | 0.1 | 0.1 | 0.1 | 0.3 | 2.2 | 96 |

## 4 Finer Discretization of Natural streamflows, Irrigation Demands, Lumped Farm Dams and Transmission Losses in the Berg River

As part of this study additional 24 EWR nodes were introduced into the Water Resources Yield Model (WRYM) to enable streamflows to be simulated at these sites and compared, if necessary, with the EWRs. The introduction of the EWR nodes required that the various components in the current model had to be split into portions upstream and downstream of the node site, including:

- Natural streamflows
- Irrigation Demands
- Lumped Farm Dams
- Losses

### 4.1 Natural streamflows

The natural runoff was apportioned by examining the natural runoffs determined as part of the WAAS study and establishing a relationship between the mean annual precipitation (MAP) and the unit mean annual runoff (MAR) from each catchment, namely:

Unit MAR =  $6344.(MAP)^{(-385/MAP)}$ 

This relationship was used to determine the unit MAR from each of the sub-catchments introduced in this study. Scaling the unit MAR by the sub-catchments' areas gave the relative MAR from each of the sub-catchments and these relative MARs could be used to apportion the MAR from each WAAS sub-catchment to its constituent EWR sub-catchments.

The scaling factors applied to discretize the WAAS streamflows in order to obtain the streamflows at the EWR nodes are given in **Table 4.** The WAAS streamflows were already discretized to provide separate streamflow sequences upstream and downstream of the farm dams and separate factors were provided to discretize each of these sets of streamflows.

|                     |                                                                                                                                                 |                                                                                                  |                                                                                   |                                                                                             |                                                                                                  |                                                                                                  |                                                |                                                     |                                                                                                  |                                                                                             |                                                          | E                                                                                           | WR                                                                                          | node                                                                                             | s                                                                                           |                                                                                             |                                                                                             |                                                     |                                                     |                                                                                             |                                                                                             | -                                                                                 | -                                                                            |                                                                                          |                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                 | Bi1                                                                                              | Biii2                                                                             | Biii3                                                                                       | Biii4                                                                                            | Biii5                                                                                            | Biv1                                           | Biv3                                                | Biv4                                                                                             | Biv5                                                                                        | Bvii10                                                   | Bvii11                                                                                      | Bvii12                                                                                      | Bvii2                                                                                            | Bvii3                                                                                       | Bvii4                                                                                       | Bvii5                                                                                       | Bvii6                                               | Bvii7                                               | Bvii8                                                                                       | Bvii9                                                                                       | Bviii2                                                                            | Bviii3                                                                       | Bviii4                                                                                   | Bviii8                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | g1h028                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1h029                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1h03                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 1                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1h04                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1h08                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 1                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1h19                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 1                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WAAS sub-catchments | g1h20                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0.2                                                                                         | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0.8                                                                                         | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tchn                | g1h35x30%(1)                                                                                                                                    | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 1                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ıb-ca               | g1h36t                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0.3                                                      | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0.1                                                                                         | 0.1                                                                                         | 0.4                                                                                         | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4S su               | g1h38                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WA                  | g1hhr                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1hsup                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 1                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1rlli                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 1                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1ro2                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1rskf                                                                                                                                          | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | g1whc                                                                                                                                           | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 1                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | glrlltd                                                                                                                                         | 0                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0.2                                            | 0.1                                                 | 0.6                                                                                              | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0.1                                                 | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Allocating WAA                                                                                                                                  | S cat                                                                                            | tchn                                                                              | nent                                                                                        | ts do                                                                                            | own                                                                                              | stre                                           | am d                                                | of fa                                                                                            | rm                                                                                          | dam                                                      | s to                                                                                        | fine                                                                                        | er su                                                                                            | bca                                                                                         | tchn                                                                                        | nent                                                                                        | s up                                                | ostre                                               | eam                                                                                         | of t                                                                                        | he E                                                                              | WR                                                                           | nod                                                                                      | les                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                                                                                                                                 |                                                                                                  |                                                                                   |                                                                                             |                                                                                                  |                                                                                                  |                                                |                                                     |                                                                                                  |                                                                                             |                                                          | E                                                                                           | WRı                                                                                         | node                                                                                             | s                                                                                           |                                                                                             |                                                                                             |                                                     |                                                     |                                                                                             |                                                                                             |                                                                                   |                                                                              |                                                                                          |                                                                              | al I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |                                                                                                                                                 |                                                                                                  |                                                                                   |                                                                                             |                                                                                                  |                                                                                                  |                                                |                                                     |                                                                                                  |                                                                                             | 0                                                        | L                                                                                           | 2                                                                                           |                                                                                                  | -                                                                                           | t                                                                                           | 2                                                                                           | 5                                                   |                                                     |                                                                                             |                                                                                             |                                                                                   |                                                                              |                                                                                          |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                                                                                                                                 | Bi1                                                                                              | Biii2                                                                             | Biii3                                                                                       | Biii4                                                                                            | Biii5                                                                                            | Biv1                                           | Biv3                                                | Biv4                                                                                             | Biv5                                                                                        | Bvii10                                                   | Bvii11                                                                                      | Bvii12                                                                                      | Bvii2                                                                                            | Bvii3                                                                                       | Bvii4                                                                                       | Bvii5                                                                                       | Bvii6                                               | Bvii7                                               | Bvii8                                                                                       | Bvii9                                                                                       | Bviii2                                                                            | Bviii3                                                                       | Bviii4                                                                                   | Bviii8                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | g1h028                                                                                                                                          | Bi1                                                                                              | o Biii2                                                                           | o Biii3                                                                                     | o Biii4                                                                                          | o Biii5                                                                                          | o Biv1                                         | o Biv3                                              | o Biv4                                                                                           | o Biv5                                                                                      | O Bvii1                                                  | 0 Bvii1:                                                                                    | O Bvii1.                                                                                    | o Bvii2                                                                                          | o Bvii3                                                                                     | o Bvii <sup>2</sup>                                                                         | o Bvii!                                                                                     | 0<br>Bvii(                                          | o Bvii7                                             | o Bvii8                                                                                     | o Bvii9                                                                                     | o Bviii2                                                                          | o Bviii3                                                                     | o Bviii4                                                                                 | o Bviii8                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | g1h028<br>g1h029                                                                                                                                |                                                                                                  |                                                                                   |                                                                                             |                                                                                                  |                                                                                                  |                                                |                                                     |                                                                                                  |                                                                                             |                                                          |                                                                                             |                                                                                             |                                                                                                  |                                                                                             |                                                                                             |                                                                                             |                                                     |                                                     |                                                                                             |                                                                                             |                                                                                   |                                                                              |                                                                                          |                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | •                                                                                                                                               | 1                                                                                                | 0                                                                                 | 0                                                                                           | 0                                                                                                | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0                                                                                 | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | g1h029                                                                                                                                          | 1                                                                                                | 0                                                                                 | 0                                                                                           | 0<br>0<br>0                                                                                      | 0                                                                                                | 0                                              | 0                                                   | 0                                                                                                | 0                                                                                           | 0                                                        | 0                                                                                           | 0                                                                                           | 0                                                                                                | 0                                                                                           | 0                                                                                           | 0                                                                                           | 0                                                   | 0                                                   | 0                                                                                           | 0                                                                                           | 0<br>0<br>0                                                                       | 0                                                                            | 0                                                                                        | 0                                                                            | 1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | g1h029<br>g1h03                                                                                                                                 | 1<br>0<br>0                                                                                      | 0<br>0<br>0                                                                       | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                      | 0<br>0<br>0                                                                                      | 0<br>0<br>0                                    | 0<br>0<br>0                                         | 0<br>1<br>0                                                                                      | 0<br>0<br>1                                                                                 | 0<br>0<br>0                                              | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                      | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                         | 0<br>0<br>0                                         | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                       | 0<br>0<br>0                                                                  | 0<br>0<br>0                                                                              | 0<br>0<br>0                                                                  | 1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | g1h029<br>g1h03<br>g1h04                                                                                                                        | 1<br>0<br>0                                                                                      | 0 0 0 0                                                                           | 0<br>0<br>0                                                                                 | 0<br>0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                      | 0<br>0<br>0                                    | 0<br>0<br>0                                         | 0<br>1<br>0<br>0                                                                                 | 0<br>0<br>1<br>0                                                                            | 0<br>0<br>0                                              | 0 0 0 0 0                                                                                   | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                      | 0<br>0<br>0                                                                                 | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0                                         | 0<br>0<br>0                                         | 0<br>0<br>0                                                                                 | 0<br>0<br>0                                                                                 | 0<br>0<br>0<br>0                                                                  | 0<br>0<br>0                                                                  | 0<br>0<br>0                                                                              | 0<br>0<br>0<br>1                                                             | 1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ents                | g1h029<br>g1h03<br>g1h04<br>g1h08                                                                                                               | 1<br>0<br>0<br>0                                                                                 | 0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>1<br>0                                                                            | 0<br>0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0                                    | 0<br>1<br>0<br>0                                                                                 | 0<br>0<br>1<br>0<br>0                                                                       | 0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0<br>1                                                                            | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0                                                                         | 0<br>0<br>0<br>1                                                             | 1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tchments            | g1h029<br>g1h03<br>g1h04<br>g1h08<br>g1h19                                                                                                      | 1<br>0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>1<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                               | 0<br>1<br>0<br>0<br>0                                                                            | 0<br>0<br>1<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>1                                                                            | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0.4                                                           | 0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0                                                                    | 0<br>0<br>1<br>0<br>0                                                        | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b-catchments        | g1h029<br>g1h03<br>g1h04<br>g1h08<br>g1h19<br>g1h20                                                                                             | 1<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0.6                                                           | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>1<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>1<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>1<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0.4                                                           | 0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0                                                               | 0<br>0<br>1<br>0<br>0<br>0                                                   | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S sub-catchments    | g1h029<br>g1h03<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)                                                                             | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0.6<br>0                                                           | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>1<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>1<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.2                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.3                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0.4<br>0                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                          | 0<br>0<br>1<br>0<br>0<br>0<br>0                                              | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38                                                          | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0.6<br>0<br>0                                                      | 0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.2                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.3<br>0                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.3<br>0                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0.4<br>0<br>0                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1                                              | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0                                         | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t                                                                   | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0.6<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>2<br>0<br>2                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.3<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0.4<br>0<br>0<br>0                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1                                              | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0                                    | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38<br>g1hhr                                        | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0                                         |                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.5                                  | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0.4<br>0<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1                                              | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0                     | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38<br>g1hhr<br>g1hsup                              | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                |                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0                                    |                                                |                                                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.5<br>0                                       | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |                                                     |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | $     \begin{array}{r}       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\       1.0 \\      1$                                                                                                                                                             |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38<br>g1hhr<br>g1hsup<br>g1rlli                    | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |                                                |                                                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | $ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38<br>g1hhr<br>g1hsup<br>g1rlli<br>g1r02<br>g1rskf | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                |                                                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | $ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WAAS sub-catchments | g1h029<br>g1h03<br>g1h04<br>g1h04<br>g1h08<br>g1h19<br>g1h20<br>g1h35x70%(1)<br>g1h36t<br>g1h38<br>g1hhr<br>g1hsup<br>g1rlli<br>g1ro2           | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                |                                                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |

# Table 4: Allocating WAAS catchments upstream of farm dams to subcatchments upstream of EWR nodes, which are defined at a finer resolution

In the original WAAS study the irrigation demands were disaggregated according to the subcatchment in which they were located (the sub-catchments were basically determined using DWA's streamflow gauges and the proposed schemes to determine the boundaries) and whether the demands were supplied from farm dams or pumped from the river.

The current study required greater discretization of the demands and the following information was used to apportion the demands with respect to the EWR sites:

- Location of the EWR sites (see **Figure 9**).
- Map showing the location and type of irrigation in the Berg River (see **Figure 10**). In the WAAS study irrigation areas downstream of Misverstand Dam were not digitised. These were estimated approximately for the current study using Google Earth images. The results of the current water use verification exercise by DWA can in future be used to update the land-use downstream of Voëlvlei Dam.
- Location of large pump schemes associated with large abstractions and the variation in application rates down the Berg River, which means that the same planted area located in the drier Northern reaches of the Berg requires more water that the equivalent area in the Southern reaches (see Figure 11).
- Extent of the sub-catchments associated with the original WAAS study and those associated with the EWR sites (see **Figure 12**).
- MAP Surface developed as part of the WAAS study and used to disaggregate the natural streamflows (see previous Section). These natural streamflows were used to estimate the summer streamflows from each sub-catchment which also reduced the volume of water that abstracted from the river.
- Farm Dam capacities based on data collected in the WAAS study, which determine the proportion of the demands that can be supplied from farm dams rather than from run-of-river abstractions.
- Actual releases to the Upper Berg Irrigation Board (i.e. excluding supply from farm dams, natural streamflow and other transfers). The annual consumption during a drought of 65 million m<sup>3</sup>/a was taken to represent the potential current usage, which is slightly less than the actual allocation of 76.7 million m<sup>3</sup>/a. From examining the location of the irrigation it was estimated that the undeveloped portion lay in the high application rate area. If the scheduled land allocated to the large irrigation boards (such as Riebeek Kasteel and Riebeek West) are assumed to be fully used, then about 45% of the remaining scheduled land is currently not in use. The assumed consumption of 65 million m<sup>3</sup>/a was taken to represent the current situation during droughts and should be taken into account when determining the water available for other users. During wetter periods, irrigators might be able to irrigate less and also use water from their farm dams so the average releases to the Upper Berg River Irrigators, if the wetter periods are also considered, might be less than 65 million m<sup>3</sup>/a.
- The scheduled release from Voelvlei Dam to the Lower Berg River irrigators is 18.1 million m<sup>3</sup>/a, including an allowance for losses. The total irrigation requirement based on the approximate Google Earth-based digitised irrigation areas was increased to 18.1 million m<sup>3</sup>/a by adding conveyance losses.



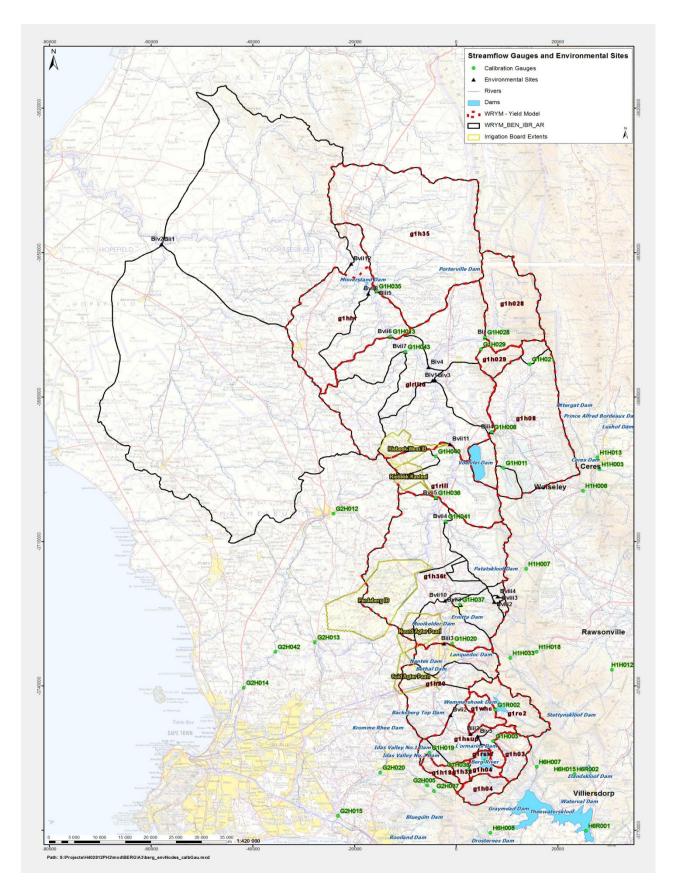



Figure 9: Streamflow gauges and EWR sites

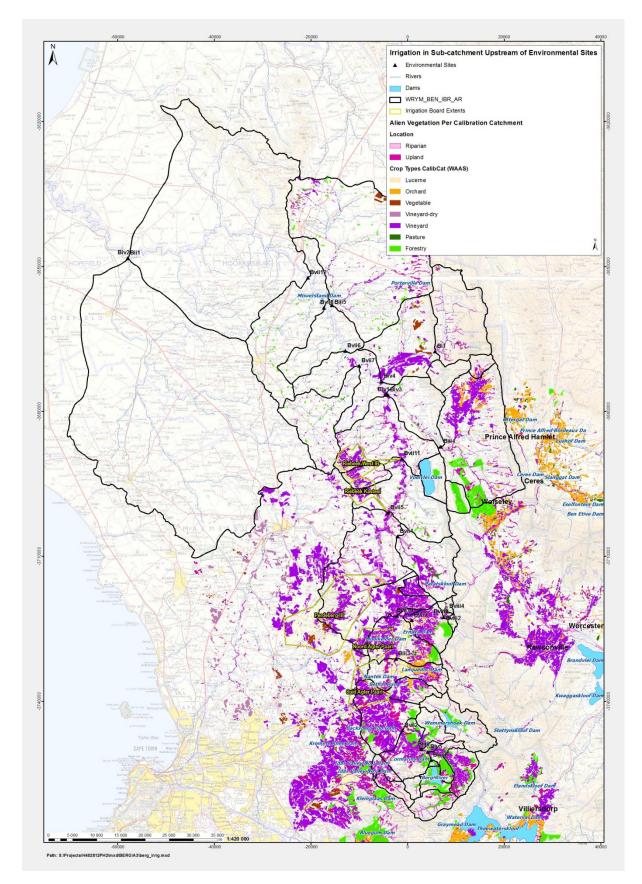



Figure 10: Irrigation in Sub-Catchments upstream of EWR Sites

Scheme Operation and Yield Analysis

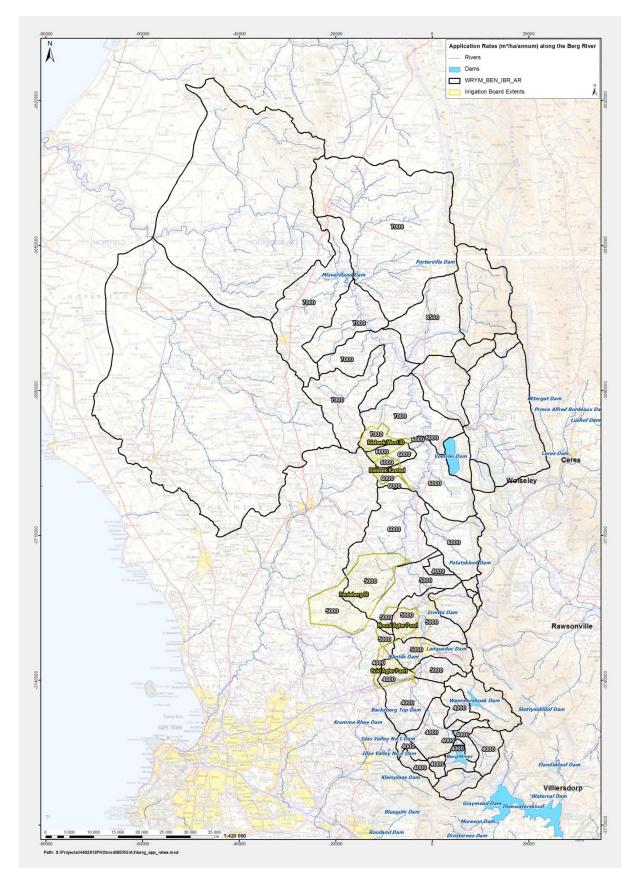



Figure 11: Major Irrigation Schemes and application rates (m<sup>3</sup>/ha/annum) along the Berg River

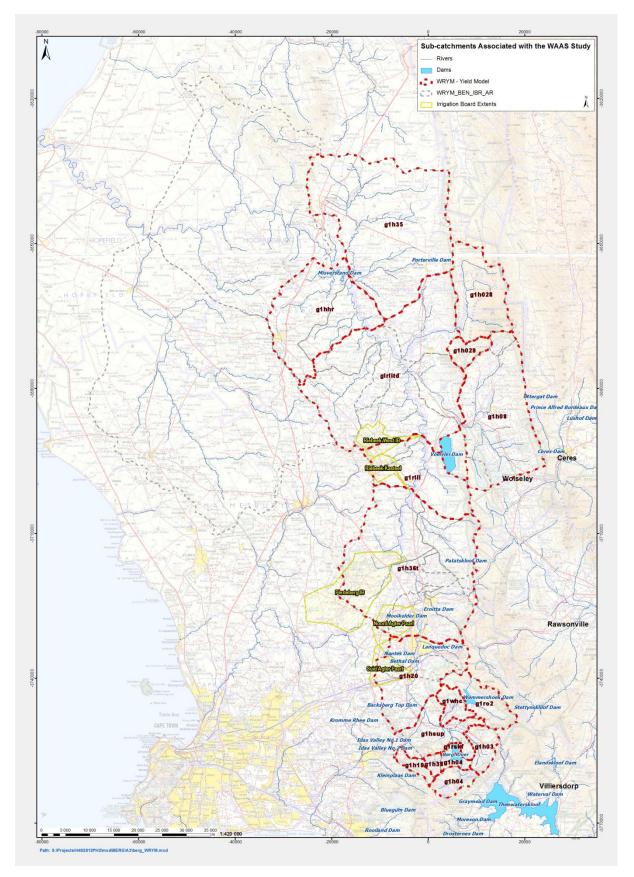



Figure 12: Sub-catchments used in the WAAS Study

# 4.3 Comparison of Irrigation Water Requirements - current study versus WAAS

**Table 5** shows that the modelled irrigation in the Berg River in the current study is about 10% largerthan that used in the WAAS study, primarily because the current demands are based on the waterrequirements during drought years rather than during average years.

| Irrigation demands by major reaches - current study     | versus WAAS (r | nillion m <sup>3</sup> /a) |
|---------------------------------------------------------|----------------|----------------------------|
|                                                         | WAAS           | Current<br>Study           |
| G1H020                                                  | 59.8           | 76.2                       |
| G1H008                                                  | 24.8           | 23.2                       |
| G1H035                                                  | 5.5            | 7.4                        |
| u/s G1H013                                              | 6.1            | 8.3                        |
| 24 R                                                    | 24.5           | 24.5                       |
| G1H003                                                  | 6.0            | 5.3                        |
| G1H036                                                  | 74.3           | 83.9                       |
| G1RLLI                                                  | 14.5           | 10.4                       |
| d/s G1H013 including 6 million m <sup>3</sup> /a losses | 16.0           | 16.0                       |
| Total                                                   | 231.4          | 255.2                      |

| Table 5: Irrigation demands by major reaches - | current study versus WAAS (million m <sup>3</sup> /a) |
|------------------------------------------------|-------------------------------------------------------|
|------------------------------------------------|-------------------------------------------------------|

For reference purposes extracts from the spreadsheet used to estimate the irrigation demands are presented below:

- Table 6: Estimating breakdown of irrigation areas into areas supplied from farm dams, catchment streamflows, Upper Berg IB allocation and Lower Berg IB allocation". In this table, within each EWR subcatchment, the farm dam capacities and runoff in the summer period, were used to estimate the irrigation area that could be supported from local resources without the need for releases from the major dams. Where water was imported from outside the catchment (Wit River and White Bridge transfers) this supply was also deducted from the water required from the major dams.
- Table 7: Refining Upper Berg IB areas according to the scheduled areas and estimates of proportion of the scheduled areas used in different reaches. Estimating Irrigation Volumes supplied from different sources. If irrigation boards (such as Riebeek Kasteel and Riebeek West) are assumed to use their full allocation then it was estimated that about 45% of the scheduled areas with application rates of 6000m<sup>3</sup>/ha may not be used while all the remaining allocations of the Upper Berg IB are fully utilized. This estimate was used to adjust the irrigation areas in the spreadsheet so the utilized scheduled areas.
- Table 8: Aggregating irrigation volumes into channels for the WRYM. Determine scaling factors to apply to WAAS irrigation demands". Where practical, irrigation demands were aggregated to simplify the modelling and the scaling factors were determined to scale the WAAS irrigation demands for use in the more detailed model.

|                                              | Catchr                         | ment Description     |                                              | Estim |        |        |            | ne irrigated a<br>om Theewat |                                           |                              |                                   |              |                                        |                              |                    |                           |                        |                                                 |                               |                                                                               |      |             | e Grand Total |                                          | tized total       | erg IB and other (f<br>and some of the  |                                   |
|----------------------------------------------|--------------------------------|----------------------|----------------------------------------------|-------|--------|--------|------------|------------------------------|-------------------------------------------|------------------------------|-----------------------------------|--------------|----------------------------------------|------------------------------|--------------------|---------------------------|------------------------|-------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|------|-------------|---------------|------------------------------------------|-------------------|-----------------------------------------|-----------------------------------|
| Si                                           | ubcatchments from              | current study        | WAAS<br>subcatchments                        | s     |        | Supply | y from fa  | rm dam stor                  | age                                       |                              |                                   |              | S                                      | ummer st                     | treamfl            | ow                        |                        |                                                 | Consid                        | lerations                                                                     |      |             |               |                                          |                   |                                         |                                   |
| Environmental Node at outlet of subcatchment | Irrigation Board               | Note                 | WAAS WRYM INC<br>WAAS WRYM INC for Farm Dams | 4000  | 2000   | 6000   | Other      | Total farm dam capacity      | Factor to account for insufficient inflow | Scaled FOS (for evaporation) | Grand Total farm dam supply (Mm3) | Summer flow  | Summer flows intercepted by major dams | Major dam intercepting flows | Utilization factor | Scaled Utilization factor | Available summer flows | Transfers into catchment during summer<br>(Mm3) | Assumed application rate (mm) | Potential area supplied from farm dams,<br>imports & summer streamflows (km2) | 4000 | 2000        | 6000          | Total Upper Berg Irrig Board + Groenberg | Lower Berg Scheme | Other (farm dams, streamflows, imports) | Grand Total (Irrigation Area) km2 |
| Bi1<br>Bii1                                  | Main Berg<br>Main Berg         |                      | g1h028 g1h028<br>Sout R Sout R               | 8     |        |        |            | 0                            | 1.0<br>1.0                                |                              | 0.0                               | 20.6         | -21                                    | Vlv                          | 1.0                | 0.8                       | 0                      |                                                 | 850<br>700                    | 0.0                                                                           |      |             |               | 0.0<br>0.0                               |                   | 0.2                                     | 0.2                               |
| DIIT                                         | Ividiii berg                   |                      | g1r02/ g1r02/                                |       |        |        |            | 0                            | 1.0                                       | ·                            | 0.0                               |              | 1                                      |                              |                    |                           |                        |                                                 | 700                           | 0.0                                                                           |      |             |               | 0.0                                      |                   | 0.1                                     | 0.1                               |
| Biii2                                        | Main Berg                      |                      | g1hwhc g1hwh                                 | c     |        |        |            | 0                            | 1.0                                       | 1                            | 0.0                               | 15.4         | -11                                    | Whk                          | 0.5                | 0.4                       | 1.76                   |                                                 | 400                           | 4.4                                                                           | 0.0  |             |               | 0.0                                      |                   | 2.7                                     | 2.7                               |
| Biii3                                        | Main Berg                      |                      | g1h20 g1h20                                  |       | 3.0    | )      |            | 3.0                          | 1.0                                       | 1                            | 2.4                               |              |                                        |                              | 1.0                | 0.8                       | 2.47                   |                                                 | 600                           | 8.1                                                                           |      | 4.3         |               | 4.3                                      |                   | 8.1                                     | 12.4                              |
| Biii4                                        | Main Berg                      |                      | g1h08 g1h08                                  |       |        |        | 14.5       | -                            | 1.0                                       | 1                            | 11.6                              |              |                                        |                              | 1.0                | 0.8                       | 11.5                   |                                                 | 498                           | 46.5                                                                          |      |             |               | 0.0                                      |                   | 46.5                                    | 46.5                              |
| Biii5                                        | Main Berg                      |                      | g1h35 g1h35                                  |       |        |        | 5.5<br>1.0 |                              | 1.0                                       | 1                            | 4.4                               |              |                                        |                              | 1.0                | 0.8                       | 2.95                   |                                                 | 620                           | 11.9                                                                          |      |             |               | 0.0                                      | C A               | 11.9                                    | 11.9<br>6.4                       |
| Biv1<br>Biv3                                 | Main Berg<br>Main Berg         |                      | g1rlltd g1rlltd<br>g1rlltd g1rlltd           |       |        |        | 0.9        |                              | 1.0                                       | 1                            | 0.8                               |              |                                        |                              | 0.0                | 0.0                       | 0                      |                                                 | 700<br>700                    | 1.2<br>3.9                                                                    |      |             |               | 0.0                                      | 6.4               | 0.2                                     | 0.2                               |
| Biv3                                         |                                |                      | ginita ginita<br>g1h029                      | )     |        |        | 0.9        | 0.9                          | 1.0                                       | 1                            | 0.7                               | 2.49         |                                        |                              | 1.0                | 0.8                       | 0                      |                                                 | 700                           | 5.9                                                                           |      |             |               | 0.0                                      |                   | 0.2                                     | 0.2                               |
| Biv4                                         | Main Berg                      |                      | g1rlltd g1rlltd                              | ,     |        |        | 9.2        |                              | 1.0                                       | 1                            | 7.4                               | 6.74         | -3                                     | Vlv                          | 1.0                | 0.8                       | 2.98                   | 12.6                                            | 850                           | 27.0                                                                          |      |             |               | 0.0                                      |                   | 28.6                                    | 28.6                              |
| Biv5                                         | Main Berg                      |                      | g1h03 g1h03                                  |       |        |        | 1.0        | 1.0                          | 1.0                                       | 1                            | 0.8                               | 5.64         |                                        |                              | 1.0                | 0.8                       | 4.51                   |                                                 | 375                           | 14.1                                                                          |      |             |               | 0.0                                      |                   | 14.1                                    | 14.1                              |
| Biv5                                         | Main Berg                      |                      | g1whc g1whc                                  |       |        |        | 0.3        | 0.3                          | 1.0                                       | 1                            | 0.2                               |              |                                        |                              | 1.0                | 0.8                       | 0                      |                                                 | 400                           | 0.6                                                                           |      |             |               |                                          |                   | 4.2                                     | 4.2                               |
|                                              |                                |                      |                                              |       |        |        |            | 0.0                          | 1.0                                       | 1                            | 0.0                               |              |                                        |                              | 1.0                | 0.8                       | 0                      |                                                 |                               |                                                                               |      |             |               |                                          |                   |                                         | 0.0                               |
| Bvii10                                       | Main Berg                      |                      | g1h36t g1h36t                                |       | 5.9    | -      |            | 5.9                          | 1.0                                       | 1                            | 4.7                               |              | -                                      |                              | 0.5                |                           | 0.9                    |                                                 | 500                           | 11.2                                                                          |      | 14.6        |               | 14.6                                     |                   | 11.2                                    | 25.8                              |
| <mark>Bvii11</mark>                          | Main Berg                      |                      | <mark>g1rll g1rll</mark>                     | ,     |        | 1.8    |            | 1.8                          | 1.0                                       | 1                            | 1.4                               | 2.89         |                                        |                              | 0.0                | 0.0                       | 0                      |                                                 | 600                           | 2.4                                                                           |      |             | 4.5           | 4.5                                      |                   | 2.4                                     | 6.9                               |
| Bvii2                                        | Main Berg                      |                      | g1h19/ g1h19/<br>g1hsup g1hsup               |       | 4      |        | ×          | 4.4                          | 1.0                                       | 1                            | 3.5                               | 4.11         |                                        |                              | 0.5                | 0.4                       | 1.64                   |                                                 | 400                           | 12.9                                                                          | ###  |             |               | 10.8                                     |                   | 12.9                                    | 23.7                              |
| Bvii2                                        | Main Berg                      |                      | g1h36t g1h36t                                |       | 2.4    | 4      | 0.0        |                              | 1.0                                       | 1                            | 1.9                               | 2.54         |                                        |                              | 1.0                | 0.8                       | 2.03                   | 4.9                                             |                               | 14.7                                                                          |      | 0.0         |               | 0.0                                      |                   | 18.4                                    | 18.4                              |
| Bvii4                                        | Main Berg                      |                      | g1h36t g1h36t                                |       |        | 0.0    | 3.9        | 3.9                          | 1.0                                       | 1                            | 3.1                               |              |                                        |                              | 0.5                | 0.4                       | 1.47                   |                                                 | 600                           | 7.6                                                                           |      |             | 0.0           | 0.0                                      |                   | 11.6                                    | 11.6                              |
| Bvii5                                        | Main Berg                      |                      | g1h36t g1h36t                                |       | 6 2.3  | 3 2.3  |            | 6.2                          | 1.0                                       | 1                            | 4.9                               | 3.96         |                                        |                              | 0.5                | 0.4                       | 1.58                   |                                                 | 600                           | 10.9                                                                          | 8.1  | 26.4        | ###           | 50.3                                     |                   | 10.9                                    | 61.1                              |
| Bvii6                                        | Main Berg                      |                      | g1rlltd g1rlltd                              |       |        |        | 0.6        | 0.6                          | 1.0                                       | 1                            | 0.5                               |              |                                        |                              | 1.0                | 0.8                       | 1.03                   |                                                 | 700                           | 2.2                                                                           |      |             |               | 0.0                                      | 2.0               | 2.2                                     | 4.2                               |
| <mark>Bvii7</mark>                           | Main Berg                      |                      | g1rlltd g1rlltd                              |       |        |        | 1.3        | 1.3                          | 1.0                                       | 1                            | 1.0                               | 1.57         |                                        |                              | 1.0                | 0.8                       | 1.26                   |                                                 | 700                           | 3.3                                                                           |      |             |               | 0.0                                      |                   | 1.0                                     | 1.0                               |
| Bvii8                                        | Main Berg                      |                      | Misv g1rlltd                                 |       | 2 2 (  | -      |            | 0.0                          | 1.0                                       | 1                            | 0.0                               |              | _                                      |                              | 0.0                | 0.0                       | 0                      | -                                               | 700                           | 0.0                                                                           | 22.0 | 7.0         |               | 20.0                                     |                   | 22.1                                    | 0.0<br>52.6                       |
| Bvii9<br>Bviii2                              | Main Berg<br>Main Berg         | On Berg R, u/s Paarl | g1h20 g1h20<br>g1h36t g1h36t                 | 5.3   | 3 3.6  | 2      |            | 8.9<br>0.0                   | 1.0                                       | 1                            | 7.1                               | 4.25<br>0.12 |                                        |                              | 0.5                | 0.4                       | 1.7<br>0.1             |                                                 | 400<br>400                    | 22.1<br>0.2                                                                   | 22.9 | 7.6         |               | 30.6<br>0.0                              |                   | 22.1<br>0.5                             | 0.5                               |
| Bviii3                                       | Main Berg                      |                      | g1h36t g1h36t                                |       | 0.0    | )      |            | 0.0                          |                                           |                              | 0.0                               |              |                                        |                              |                    | 0.8                       |                        |                                                 | 400                           | 0.2                                                                           |      |             |               | 0.0                                      |                   | 0.0                                     | 0.0                               |
| Bviii4                                       | Main Berg                      |                      | g1h36t g1h36t                                |       |        | -      |            | 0.0                          |                                           |                              | 0.0                               |              |                                        | 1                            |                    | 0.8                       |                        | 1                                               | 400                           |                                                                               |      | 0.0         |               | 0.0                                      |                   | 0.5                                     | 0.5                               |
| Bviii8                                       |                                | see Noord Agter P    | g1h04 g1h04                                  |       | 0      |        |            | 0.0                          | 1.0                                       | 1                            | 0.0                               |              | -19                                    | BRD                          | 1.0                | 0.8                       | -0                     |                                                 | 400                           | 0.0                                                                           | 0.2  |             |               | 0.2                                      |                   | 0.0                                     | 0.2                               |
| na-expo                                      | rtNoord Agter Paarl            |                      |                                              |       | 0.0    |        |            | 0.0                          |                                           |                              | 0.0                               |              |                                        |                              |                    | 0.8                       |                        |                                                 | 500                           |                                                                               |      | 2.2         |               | 2.2                                      |                   | 0.0                                     | 2.3                               |
| Bvii10                                       |                                | On Berg R, d/s Krom  |                                              |       | 3.7    |        |            | 3.7                          |                                           |                              |                                   | 0.79         |                                        |                              |                    | 0.8                       |                        |                                                 | 500                           | 7.2                                                                           |      | 6.9         |               | 6.9                                      |                   | 7.2                                     | 14.0                              |
| Bvii5                                        | Noord Agter Paarl              |                      | g1h36t g1h36t                                |       | 0.7    |        |            | 0.7                          |                                           |                              | 0.5                               |              | -                                      |                              | 1.0                |                           |                        |                                                 | 500<br>500                    | 1.5<br>1.2                                                                    |      | 4.5<br>11.8 |               | 4.5<br>11.8                              |                   | 1.5                                     | 6.0<br>13.0                       |
| na-expo<br>Bvii5                             | rtPerdeberg IB<br>Perdeberg IB |                      | <br>g1h36t g1h36t                            |       | 5.8    |        |            | 0.8                          | 1.0<br>1.0                                |                              | 0.6                               | 1.78         |                                        |                              | 1.0                |                           |                        |                                                 | 500                           | 1.2                                                                           |      | 11.8        |               | 11.8                                     |                   | 1.2<br>12.1                             | 24.9                              |
| Bvii11                                       | Riebeek Kasteel                |                      | g1rll g1rll                                  |       | 5.0    | 2.2    |            | 2.2                          |                                           |                              | 1.8                               |              |                                        |                              | 1.0                |                           |                        |                                                 | 600                           |                                                                               |      | 12.0        | 5.6           |                                          |                   | 3.5                                     | 9.1                               |
| Biv1                                         | Riebeek West IB                |                      | g1rlltd g1rlltd                              |       | 1      | 1.7    |            | 1.7                          |                                           | 1                            | 1.3                               |              |                                        |                              | 1.0                |                           |                        |                                                 | 600                           |                                                                               |      |             | 5.1           | 5.1                                      |                   | 3.0                                     | 8.2                               |
| Bvii11                                       | Riebeek West IB                |                      | g1rll g1rll                                  |       |        | 0.7    |            | 0.7                          |                                           | 1                            | 0.6                               | 0.39         |                                        |                              | 1.0                | 0.8                       | 0.31                   |                                                 | 600                           | 1.4                                                                           |      |             | 7.7           | 7.7                                      |                   | 1.4                                     | 9.1                               |
|                                              | rtSuid Agter Paarl             |                      |                                              | 0.:   |        |        |            | 0.1                          | 1.0                                       | _                            | 0.1                               |              |                                        |                              | 1.0                |                           |                        |                                                 | 400                           | 0.1                                                                           | 3.0  |             |               | 3.0                                      |                   | 0.1                                     | 3.2                               |
| Bvii9                                        | Suid Agter Paarl               |                      | g1h20 g1h20                                  | 2.0   | 0      |        |            | 2.0                          |                                           |                              | 1.6                               |              |                                        |                              | 1.0                |                           | 0.41                   |                                                 | 400                           | 5.1                                                                           | 10.3 |             |               | 10.3                                     |                   | 5.1                                     | 15.3                              |
| Bvii8<br>Bvii12                              |                                |                      | d                                            | ,     |        |        |            |                              | 1.0<br>1.0                                |                              | 0.0                               |              |                                        |                              |                    | 0.8                       |                        |                                                 | 700                           | 0.0                                                                           |      |             |               |                                          | 4.8               |                                         | 4.8<br>0.0                        |
| BVII12<br>Biv2                               | +                              |                      | dummy                                        | /     |        |        |            | 0.0                          |                                           |                              | 10.0                              |              |                                        |                              |                    | 0.8                       |                        |                                                 | 700                           | 14.3                                                                          |      |             |               |                                          | 3.6               | 8.5                                     |                                   |
| Biv2                                         |                                |                      |                                              |       |        |        |            | 12.5                         | 1.0                                       |                              | 10.0                              |              |                                        |                              | 1.0                | 0.8                       |                        |                                                 | 700                           | 14.3                                                                          |      |             |               |                                          | 5.0               | 0.5                                     | 12.0                              |
|                                              | Losses                         |                      | 1                                            |       |        |        |            |                              |                                           |                              |                                   |              |                                        |                              | 1.0                | 0.8                       |                        |                                                 |                               |                                                                               |      |             |               |                                          |                   |                                         | 0.0                               |
| Total                                        | -                              | -                    |                                              | 13.4  | 4 28.1 | 1 8.6  | 38.3       | 100.9                        |                                           |                              | 70.8                              | 127          | -54                                    |                              |                    | 0.8                       |                        | 17.5                                            | 476                           | 278.5                                                                         | 55.3 | 91.2        | 38.7          | 185.1                                    | 8.5               | 245.4                                   | 439.0                             |

#### Table 6: Estimating breakdown of irrigation areas into areas supplied from farm dams, catchment streamflows, Upper Berg IB allocation and Lower Berg IB allocation

#### Table 7: Refining Upper Berg IB areas according to the scheduled areas and estimates of proportion of the scheduled areas used in different reaches. Estimating Irrigation Volumes supplied from different sources.

|                                              | Catch                                  | ment Description    |                                              | Adjustme    | ent of irrigat | tion areas ir | n the Upper B                     |                   |                                         |                                   |                                                                      |                                                 |                        | one where it a<br>Vest) is utilized |                                                                    | about 55% of                                    | the schedul            | ed area (after        | Irrigation                                               | volume (N             | ∕lill m³/a) for  | the irrig                       | ation areas | associated  |
|----------------------------------------------|----------------------------------------|---------------------|----------------------------------------------|-------------|----------------|---------------|-----------------------------------|-------------------|-----------------------------------------|-----------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------|-------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------------|----------------------------------------------------------|-----------------------|------------------|---------------------------------|-------------|-------------|
| Sub                                          | ocatchments from                       | current study       | WAAS<br>subcatchments                        | Irrig       | ation areas    | (GIS) NOT     | supplied from                     |                   |                                         |                                   |                                                                      | RG IRRIGATI                                     | ON BOARD: S            |                                     |                                                                    |                                                 | ON BOARD: L<br>IMATE   | JTILIZED AREA         | Ingulion                                                 |                       | th each dem      |                                 |             | Jussociated |
| Environmental Node at outlet of subcatchment | Irrigation Board                       | Note                | WAAS WRYM INC<br>WAAS WRYM INC for Farm Dams | 4000        | 5000           | 6000          | Total Berg Main Board + groenberg | Lower Berg Scheme | Other (farm dams, streamflows, imports) | Grand Total (Irrigation Area) km2 | Application rate: 4000 (including<br>Banhoek, Simonsberg, Simondium) | Application rate: 5000 (including<br>Groenberg) | Application rate: 6000 | Total Upper Berg (ha)               | Application rate: 4000 (including<br>Banhoek,Simonsberg,Simondium) | Application rate: 5000 (including<br>Groenberg) | Application rate: 6000 | Total Upper Berg (ha) | Estimated Volume for Upper Berg utilized<br>area (Mm3/a) | Lower Berg IB Demands | Farm dams        | Other irrigation if no farm dam | Imports     | Total       |
|                                              | Main Berg<br>Main Berg                 |                     | g1h028 g1h028<br>Sout R Sout R               | 0.0         |                | 0.0           | 0.0                               | <u> </u>          | 0.2                                     | 0.2                               |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.0<br>0.0       | 0.2<br>0.1                      | 0.0<br>0.0  | 0.2         |
|                                              | שמווו שכוצ                             |                     | g1r02/ g1r02/                                | 0.0         | 0.0            | 0.0           | 0.0                               | , 0.0             | 0.1                                     | 0.1                               | 0                                                                    | 0                                               | 0                      | t                                   |                                                                    |                                                 | 0                      | 0                     | 0.0                                                      |                       | 0.0              | 0.1                             | 0.0         | 0.1         |
|                                              | Main Berg                              |                     | g1hwhc g1hwhc                                | 0.0         |                | 0.0           | 0.0                               |                   | 2.7                                     | 2.7                               |                                                                      | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.0              | 1.1                             | 0.0         | 1.1         |
|                                              | Main Berg                              |                     | g1h20 g1h20                                  | 0.0         |                | 0.0           | 4.3                               |                   | 8.1                                     | 12.4                              |                                                                      | 380                                             | 0                      | 380                                 |                                                                    | 380                                             | 0                      | 380                   | 1.9                                                      |                       | 2.4              | 2.5                             | 0.0         | 6.8         |
| Biii4<br>Biii5                               | Main Berg<br>Main Berg                 |                     | g1h08 g1h08<br>g1h35 g1h35                   | 0.0         |                | 0.0           | 0.0                               |                   | 46.5<br>11.9                            | 46.5<br>11.9                      |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 11.6<br>4.4      | 11.5<br>3.0                     | 0.0<br>0.0  | 23.2<br>7.4 |
|                                              | Main Berg                              |                     | g1rlltd g1rlltd                              | 0.0         |                | 0.0           | 0.0                               | <u> </u>          | 0.0                                     | 6.4                               |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      | 4.5                   | 0.0              | 0.0                             | 0.0         | 4.5         |
| Biv3                                         | Main Berg                              |                     | g1rlltd g1rlltd                              | 0.0         |                | 0.0           | 0.0                               |                   | 0.2                                     | 0.2                               |                                                                      | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.2              | 0.0                             | 0.0         | 0.2         |
| Biv4                                         |                                        |                     | g1h029                                       | 0.0         |                | 0.0           | 0.0                               | 0.0               | 0.0                                     | 0.0                               |                                                                      |                                                 |                        |                                     |                                                                    |                                                 | 0                      |                       |                                                          |                       |                  | 0.0                             |             | 0.0         |
|                                              | Main Berg                              |                     | g1rlltd g1rlltd                              | 0.0         |                | 0.0           | 0.0                               |                   | 28.6                                    | 28.6                              |                                                                      | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 7.4              | 4.3                             | 12.6        | 24.3        |
| Biv5                                         | Main Berg                              |                     | g1h03 g1h03                                  | 0.0         |                | 0.0<br>0.0    | 0.0                               |                   | <u>14.1</u><br>4.2                      | <u>14.1</u><br>4.2                |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.8              | 4.5<br>1.7                      | 0.0         | 5.3<br>1.7  |
| Biv5                                         | Main Berg                              |                     | g1whc g1whc                                  | 0.0         |                | 0.0           | 0.0                               |                   | 0.0                                     | 4.2                               | -                                                                    | U                                               | 0                      |                                     | 0                                                                  | U                                               | 0                      | 0                     | 0.0                                                      |                       |                  | 0.0                             |             | 0.0         |
| Bvii10                                       | Main Berg                              |                     | g1h36t g1h36t                                | 0.0         |                | 0.0           | 14.6                              |                   | 11.2                                    | 25.8                              |                                                                      | 1295                                            | 0                      | 1295                                | 0                                                                  | 1295                                            | 0                      | 1295                  | 6.5                                                      |                       | 4.7              | 0.9                             | 0.0         | 12.1        |
| <mark>Bvii11</mark>                          | Main Berg                              |                     | g1rll g1rll                                  | 0.0         | 0.0            | 4.5           | 4.5                               | 0.0               | 2.4                                     | 6.9                               | 0                                                                    | 0                                               | 695                    | 695                                 | 0                                                                  | 0                                               | 379                    | 379                   | 2.3                                                      |                       | <mark>1.4</mark> | 0.0                             | 0.0         | 3.7         |
| _                                            |                                        |                     | g1h19/ g1h19/                                |             |                |               |                                   |                   |                                         |                                   |                                                                      |                                                 |                        |                                     | 1024                                                               | 0                                               | _                      |                       |                                                          |                       |                  |                                 |             |             |
| Bvii2<br>Bvii3                               | Main Berg<br>Main Berg                 |                     | g1hsup g1hsup<br>g1h36t g1h36t               | 10.8<br>0.0 |                | 0.0<br>0.0    | <u> </u>                          |                   | 12.9<br>18.4                            | 23.7<br>18.4                      | 1024                                                                 | 0                                               | 0                      | 1024                                | 0                                                                  | 0                                               | 0                      | 1024<br>0             | 4.1<br>0.0                                               |                       | 3.5<br>1.9       | 1.6<br>4.2                      | 0.0<br>4.9  | 9.3<br>11.1 |
| -                                            | Main Berg                              |                     | g1h36t g1h36t                                | 0.0         |                | 0.0           | 0.0                               |                   | 18.4                                    | 11.6                              |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 3.1              | 3.9                             | 4.9         | 7.0         |
|                                              | Main Berg                              |                     | g1h36t g1h36t                                | 8.1         | 26.4           | 15.7          | 50.3                              |                   | 10.9                                    | 61.1                              |                                                                      | 2343                                            | 2412                   | 5522                                | 768                                                                | 2343                                            | 1316                   | 4427                  | 22.7                                                     |                       | 4.9              | 1.6                             | 0.0         | 29.2        |
| Bvii6                                        | Main Berg                              |                     | g1rlltd g1rlltd                              | 0.0         |                | 0.0           | 0.0                               |                   | 2.2                                     | 4.2                               |                                                                      | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      | 1.4                   | 0.5              | 1.0                             | 0.0         | 3.0         |
| Bvii7                                        | Main Berg                              |                     | g1rlltd g1rlltd                              | 0.0         |                | 0.0           | 0.0                               | 0.0               | 1.0                                     | 1.0                               |                                                                      | 0                                               | 0                      | 0                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.7              | 0.0                             | 0.0         | 0.7         |
| Bvii8<br>Bvii9                               | Main Berg<br>Main Berg                 | On Berg R, u/s Paar | Misv g1rlltd<br>I g1h20 g1h20                | 0.0         |                | 0.0           | 0.0                               |                   | 0.0<br>22.1                             | 0.0<br>52.6                       |                                                                      | 0<br>678                                        | 0                      | 2853                                | 0<br>2175                                                          | 0<br>678                                        | 0                      | 0<br>2853             | 0.0                                                      | 0.0                   | 0.0              | 0.0<br>1.7                      | 0.0<br>0.0  | 0.0<br>20.9 |
| -                                            | Main Berg                              | On beig N, u/s Faar | g1h36t g1h36t                                | 0.0         |                |               |                                   | 1 1               | 0.5                                     | 0.5                               |                                                                      | 078                                             | 0                      |                                     | 0                                                                  | 078                                             | 0                      | 0                     | 0.0                                                      |                       | 0.0              | 0.2                             | 0.0         | 0.2         |
|                                              | Main Berg                              |                     | g1h36t g1h36t                                | 0.0         |                |               |                                   |                   | 0.0                                     | 0.0                               | 0                                                                    | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.0              | 0.0                             | 0.0         | 0.0         |
|                                              | Main Berg                              |                     | g1h36t g1h36t                                | 0.0         |                |               |                                   |                   | 0.5                                     | 0.5                               |                                                                      | 0                                               | 0                      | C                                   | 0                                                                  | 0                                               | 0                      | 0                     | 0.0                                                      |                       | 0.0              | 0.2                             | 0.0         | 0.2         |
|                                              |                                        | see Noord Agter P   | g1h04 g1h04                                  | 0.2         |                |               |                                   |                   | 0.0                                     | 0.2                               |                                                                      |                                                 | 0                      | 15                                  | _                                                                  | 0                                               | 0                      | 15                    | 0.1                                                      |                       | 0.00             | 0.00                            | 0.00        | 0.1         |
|                                              | Noord Agter Paarl<br>Noord Agter Paarl | On Berg R, d/s Kron | -<br>ng1h36t g1h36t                          | 0.0         |                | 0.0<br>0.0    |                                   |                   | 0.0<br>7.2                              | 2.3<br>14.0                       |                                                                      | 180<br>549                                      |                        | 180<br>549                          |                                                                    | 180<br>549                                      | 0                      | 180<br>549            | 0.9<br>2.7                                               |                       | 0.0              | 0.0<br>0.6                      | 0.0<br>0.0  | 0.9<br>6.3  |
|                                              | Noord Agter Paarl                      |                     | g1h36t g1h36t                                | 0.0         |                |               |                                   |                   | 1.5                                     | 6.0                               |                                                                      | 358                                             |                        | 358                                 |                                                                    | 358                                             | 0                      | 358                   | 1.8                                                      |                       | 0.5              | 0.0                             | 0.0         | 2.5         |
|                                              | Perdeberg IB                           |                     |                                              | 0.0         | 11.8           | 0.0           | 11.8                              | 8 0.0             | 1.2                                     | 13.0                              |                                                                      | 741                                             |                        | 741                                 | 0                                                                  | 741                                             | 0                      | 741                   | 3.7                                                      |                       | 0.6              | 0.0                             | 0.0         | 4.3         |
|                                              | Perdeberg IB                           |                     | g1h36t g1h36t                                | 0.0         |                |               |                                   |                   | 12.1                                    | 24.9                              |                                                                      | 805                                             |                        | 805                                 |                                                                    | 805                                             | 0                      | 805                   | 4.0                                                      |                       | 4.6              | 1.4                             | 0.0         | 10.1        |
|                                              | Riebeek Kasteel<br>Riebeek West IB     |                     | g1rll g1rll<br>g1rlltd g1rlltd               | 0.0         |                |               | 5.6<br>5.1                        |                   | 3.5<br>3.0                              | 9.1<br>8.2                        |                                                                      |                                                 | 177<br>62              | 177<br>62                           |                                                                    | 0                                               | 177<br>62              | 177<br>62             | 1.1<br>0.4                                               |                       | 1.8<br>1.3       | 0.3<br>0.5                      | 0.0<br>0.0  | 3.1<br>2.2  |
|                                              | Riebeek West IB                        |                     | g1riita g1riita                              | 0.0         |                |               | 7.7                               |                   | 3.0                                     | 8.2<br>9.1                        |                                                                      |                                                 | 93                     | 93                                  |                                                                    | 0                                               | 93                     | 93                    | 0.4                                                      |                       | 0.6              | 0.5                             | 0.0         | 1.4         |
|                                              | Suid Agter Paarl                       |                     | <u> </u>                                     | 3.0         |                |               | 3.0                               |                   | 0.1                                     | 3.2                               |                                                                      |                                                 |                        | 200                                 |                                                                    | 0                                               | 0                      | 200                   | 0.8                                                      |                       | 0.1              | 0.0                             | 0.0         | 0.9         |
|                                              | Suid Agter Paarl                       |                     | g1h20 g1h20                                  | 10.3        | 0.0            | 0.0           | 10.3                              | <u> </u>          | 5.1                                     | 15.3                              | 676                                                                  |                                                 |                        | 676                                 | 676                                                                | 0                                               | 0                      | 676                   | 2.7                                                      |                       | 1.6              | 0.4                             | 0.0         | 4.7         |
| Bvii8                                        |                                        |                     | <br>                                         |             |                |               |                                   | 4.8               |                                         |                                   |                                                                      |                                                 |                        |                                     |                                                                    |                                                 |                        |                       |                                                          | 3.4                   |                  |                                 |             | 3.4         |
| Bvii12<br>Biv2                               |                                        |                     | dummy                                        |             |                |               |                                   | 3.6               |                                         |                                   |                                                                      |                                                 |                        |                                     |                                                                    |                                                 |                        |                       |                                                          | 2.5                   | 5.9              |                                 |             | 0.0<br>8.4  |
| Biv2<br>Biv2                                 |                                        |                     | <u> </u>                                     |             |                |               |                                   | 5.0               |                                         |                                   |                                                                      |                                                 |                        |                                     |                                                                    |                                                 |                        |                       |                                                          | 2.5                   | 5.5              |                                 |             | 0.4         |
|                                              | Losses                                 |                     |                                              |             |                |               |                                   |                   |                                         |                                   |                                                                      |                                                 |                        |                                     |                                                                    |                                                 |                        |                       |                                                          | 6.3                   |                  |                                 |             | 6.3         |
| Total                                        | -                                      |                     |                                              | 55.3        | 91.2           | 38.7          | 185.1                             | 8.5               | 245.4                                   | 439.0                             | 4857                                                                 | 7329                                            | 3438                   | 15624                               | 4857                                                               | 7329                                            | 2027                   | 14213                 | 68.2                                                     | 18.1                  | 74.7             | 47.9                            | 17.5        | 226.4       |

|                                                 | Catch                  | ment Description     |                  |                                |                                                             | gation volum<br>gation areas       | •                                  |        | ne                            |                                                               |                                                 |                                                                                | ches (demands from<br>been aggregated)        | together. If,                                               | ands for reaches,<br>on any line, the ch<br>d has been aggrea | hannel of a de                                         | mand is pr | eceded by "to | " then that lines       | demand file                |        | WAAS st | isting irrigation<br>tudy to obtain<br>resolution |
|-------------------------------------------------|------------------------|----------------------|------------------|--------------------------------|-------------------------------------------------------------|------------------------------------|------------------------------------|--------|-------------------------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|------------|---------------|-------------------------|----------------------------|--------|---------|---------------------------------------------------|
| Sub                                             | catchments from        | current study        |                  | ed WAAS                        |                                                             | •                                  | nd groupin                         |        |                               | De                                                            | emands                                          | Channe                                                                         | el Nos of demands                             |                                                             | emand (Mill $m^3/a$ )                                         |                                                        |            | channe        |                         | demane                     |        |         |                                                   |
| Environmental Node at<br>outlet of subcatchment | Irrigation Board       | Note                 | WAAS WRYM INC    | WAAS WRYM INC for Farm<br>Dams | Estimated volume for<br>Upper Berg utilized area<br>(Mm3/a) | Lower Berg IB Demands<br>Farm dams | Other irrigation if no farm<br>dam | =      | Total<br>Estimated volume for | Upper Berg utilized area<br>(Mma2/a)<br>Lower Berg IB Demands | Farm dams<br>Other irrigation if no farm<br>dam | Imports/Schemes<br>Estimateu Voiume Tor<br>Upper Berg utilized area<br>(Mma/a) | Farm dams Other irrigation if no farm dam lam | Estimated Volume for<br>Upper Berg utilized area<br>(Mm3/a) | Lower Berg IB Demands                                         | Other Demands (farm<br>dams, summer flows,<br>imports) | Upper Berg | Lower Berg    | Other                   | File to scale (dem suffix) | Demand | Scale   | Demand file name (dem<br>suffix) (new?)           |
|                                                 | Main Berg              |                      | g1h028           | g1h028                         | 0.0                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               |                         |                            |        |         |                                                   |
| Bii1                                            | Main Berg              |                      | Sout R           | Sout R                         | 0.0                                                         | 0.                                 | 0 0.1                              | 0.0    | 0.1                           |                                                               |                                                 |                                                                                |                                               | 0.00                                                        | 0                                                             |                                                        |            |               |                         |                            |        |         |                                                   |
| Biii2                                           | Main Berg              |                      | g1r02/<br>g1hwhc | g1r02/<br>g1hwhc               | 0.0                                                         | 0.                                 | 0 1.1                              | 0.0    | 11                            |                                                               | 1.1                                             |                                                                                | 316                                           | 0.00                                                        | 0                                                             | 1.1                                                    | _          |               | 3                       | 16<br>g1hwhc-d             | 2.3    | 0.45    | 7g1whc-db                                         |
|                                                 | Main Berg              |                      | ginwnc<br>g1h20  | g1nwnc<br>g1h20                | 1.9                                                         | 0.                                 | 4 2.5                              |        | 1.1<br>6.8                    | 1.9                                                           | 4.9                                             | 514                                                                            | 218                                           | 1.90                                                        | 0                                                             | 4.9                                                    | 514        | 1             | 2                       | ginwhc-d                   | 2.3    | 0.47    | RTMUC-OD                                          |
|                                                 | Main Berg              |                      | g1h20            | g1120<br>g1h08                 | 0.0                                                         | 11.                                |                                    | 0.0 2  |                               | 1.5                                                           | 23.2                                            | 514                                                                            | 77                                            | 0.00                                                        |                                                               | 23.2                                                   |            | 1             |                         | 77g1h08-d                  | 23.0   | 0.90    | 9g1h08-d                                          |
|                                                 | Main Berg              |                      | g1h35            | g1h35                          | 0.0                                                         | 4.                                 |                                    |        | 7.4                           |                                                               | 7.4                                             |                                                                                | 536                                           | 0.00                                                        |                                                               | 7.4                                                    |            |               |                         | 36g1rlltdd                 | 18.8   |         | 9g1h35                                            |
|                                                 | Main Berg              |                      | g1rlltd          | g1rlltd                        | 0.0                                                         | 4.5 0.                             |                                    |        | 4.5                           | 4.7                                                           |                                                 | 53                                                                             |                                               | 0.00                                                        |                                                               | ,                                                      |            | 531           |                         | 29                         |        |         | <u> </u>                                          |
|                                                 | Main Berg              |                      | g1rlltd          | g1rlltd                        | 0.0                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 267                  | _                          |        |         |                                                   |
| Biv4                                            |                        |                      |                  | g1h029                         |                                                             |                                    | 0.0                                |        | 0.0                           |                                                               |                                                 |                                                                                |                                               | 0.00                                                        | 0                                                             |                                                        |            |               |                         |                            |        |         |                                                   |
| Biv4                                            | Main Berg              |                      | g1rlltd          | g1rlltd                        | 0.0                                                         | 7.                                 | 4 4.3                              | 12.6 2 | 24.3                          |                                                               | 24.5                                            |                                                                                | 527                                           | 0.00                                                        | 0                                                             | 24.5                                                   | ;          |               | 5                       | 27g1rlltdd                 | 18.8   | 1.30    | 024River                                          |
|                                                 |                        |                      |                  |                                |                                                             |                                    |                                    |        |                               |                                                               | 5.3                                             |                                                                                | 314                                           | 0.00                                                        | 0                                                             | 5.3                                                    |            |               | 3                       | 14 <sup>g1h03-d+</sup>     |        |         |                                                   |
|                                                 | Main Berg              |                      | g1h03            | g1h03                          | 0.0                                                         | 0.                                 |                                    |        | 5.3                           |                                                               |                                                 |                                                                                |                                               |                                                             |                                                               |                                                        |            |               |                         | g1h03-s                    | 5.9    |         | 9g1h03                                            |
| Biv5                                            | Main Berg              |                      | g1whc            | g1whc                          | 0.0                                                         |                                    | 1.7                                |        | 1.7                           |                                                               | 1.7                                             |                                                                                | 524                                           | 0.00                                                        |                                                               | 1.7                                                    | 7          |               | 5                       | 24g1hws-s                  | 6.8    | 0.24    | 4g1hws-sb                                         |
| D.:::10                                         | Main Darg              |                      | g1h36t           | g1h36t                         | 6.5                                                         | 4.                                 | 0.0                                | 0.0 1  | 0.0                           | 11.9                                                          | 10.0                                            | <b>F1F</b>                                                                     | 258                                           | 0.00                                                        |                                                               | 10.0                                                   | ) 515      | -             | 2                       |                            |        |         |                                                   |
|                                                 | Main Berg<br>Main Berg |                      | g11360<br>g1rll  | g1136t<br>g1rll                | 2.3                                                         | 4.                                 | 4 0.0                              |        | 3.7                           | 4.3 0.0                                                       |                                                 | 515                                                                            | 258                                           | 4.26                                                        |                                                               | 6.2                                                    |            |               | 2                       |                            | -      |         |                                                   |
|                                                 | IVIAIII DEIg           |                      | g1h19/           | g1h19/                         | 2.5                                                         |                                    | 4 0.0                              | 0.0    | 5.7                           |                                                               |                                                 |                                                                                |                                               | 4.20                                                        | 0                                                             |                                                        |            |               |                         |                            |        |         | +                                                 |
| Bvii2                                           | Main Berg              |                      | g1hsup           | g1hsup                         | 4.1                                                         | 3.                                 | 5 1.6                              | 0.0    | 9.3                           | 4.2                                                           | 5.2                                             | 513                                                                            | 224                                           | 4.16                                                        | 0                                                             | 5.2                                                    | 513        | 3             | 2                       | 24                         |        |         |                                                   |
|                                                 | Main Berg              |                      | g1h36t           | g1h36t                         | 0.0                                                         | 1.                                 |                                    |        | 11.1                          |                                                               | 11.5                                            |                                                                                | 501                                           | 0.00                                                        | 0                                                             | 11.5                                                   | ;          |               | 50                      | 01UBergDam                 | 61.3   | 0.19    | 9Krom                                             |
| Bvii4                                           | Main Berg              |                      | g1h36t           | g1h36t                         | 0.0                                                         | 3.                                 | 1 3.9                              | 0.0    | 7.0                           |                                                               | 7.0                                             |                                                                                | 504                                           | 0.00                                                        | 0                                                             | 7.0                                                    | )          |               | 50                      | 04UBergDam                 | 61.3   | 0.11    | 1Komp                                             |
| Bvii5                                           | Main Berg              |                      | g1h36t           | g1h36t                         | 22.7                                                        | 4.                                 | 9 1.6                              | 0.0 2  | 29.2                          | 30.4                                                          | 13.2                                            | 516                                                                            | 507                                           | 30.41                                                       | 0                                                             | 13.2                                                   | 516        | 5             | 50                      | 07                         |        |         |                                                   |
| Bvii6                                           | Main Berg              |                      | g1rlltd          | g1rlltd                        | 0.0                                                         | 1.4 0.                             | 5 1.0                              | 0.0    | 3.0                           | 1.4                                                           | 1.5                                             | !                                                                              | 533 267                                       | 0.00                                                        |                                                               | 1.5                                                    | ò          | 533           |                         | 67g1rlltdd                 | 18.8   |         | 8G1h13d                                           |
|                                                 | Main Berg              |                      | g1rlltd          | g1rlltd                        | 0.0                                                         | 0.                                 |                                    | 0.0    |                               |                                                               | 0.7                                             |                                                                                | 535                                           | 0.00                                                        |                                                               | 0.7                                                    | 7          |               |                         | <mark>35</mark> g1rlltdd   | 18.8   | 0.04    | 4G1h43                                            |
|                                                 | Main Berg              |                      | Misv             | g1rlltd                        | 0.0                                                         | <b>0.0</b> 0.                      | _                                  |        | 0.0                           |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            | 540           |                         |                            |        |         |                                                   |
|                                                 |                        | On Berg R, u/s Paarl |                  | g1h20                          | 12.1                                                        | 7.                                 |                                    | 0.0 2  |                               | 15.6                                                          | 10.9                                            | 522                                                                            | 506                                           | 15.59                                                       |                                                               | 10.9                                                   | 522        |               |                         | 06                         |        |         |                                                   |
|                                                 | Main Berg              |                      | g1h36t           | g1h36t                         | 0.0                                                         | 0.                                 |                                    |        | 0.2                           |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 501                  |                            |        |         |                                                   |
|                                                 | Main Berg<br>Main Berg |                      | g1h36t<br>g1h36t | g1h36t<br>g1h36t               | 0.0                                                         | 0.                                 |                                    |        | 0.0<br>0.2                    |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 501<br><b>to 501</b> |                            |        |         | <u> </u>                                          |
|                                                 |                        | see Noord Agter P    |                  | g1h36t<br>g1h04                | 0.0                                                         | <b>.</b>                           |                                    | 0.00   |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        | -                                                             |                                                        |            |               | 10 301                  |                            |        |         | +                                                 |
|                                                 | Noord Agter Paarl      | Sectional Agreet     | -                | -                              | 0.1                                                         | 0.0                                |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        | <u> </u>   | 1             | 1                       | +                          |        |         | <u>+</u>                                          |
|                                                 |                        | On Berg R, d/s Krom  | g1h36t           | g1h36t                         | 2.7                                                         | 3.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 258                  |                            |        |         | 1                                                 |
|                                                 | Noord Agter Paarl      |                      | g1h36t           | g1h36t                         | 1.8                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        | 1          | 1             | to 507                  |                            |        |         | 1                                                 |
|                                                 | Perdeberg IB           |                      | -                | F                              | 3.7                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | 1                       |                            |        |         | 1                                                 |
|                                                 | Perdeberg IB           |                      | g1h36t           | g1h36t                         | 4.0                                                         | 4.                                 | 6 1.4                              | 0.0 1  |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        | 0                                                             |                                                        |            |               | to 507                  |                            |        |         |                                                   |
|                                                 | Riebeek Kasteel        |                      | g1rll            | g1rll                          | 1.1                                                         | 1.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 261                  |                            |        |         |                                                   |
|                                                 | Riebeek West IB        |                      | _                | g1rlltd                        | 0.4                                                         | 1.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        | L          |               | to 261                  |                            |        |         | <b></b>                                           |
|                                                 | Riebeek West IB        |                      | g1rll            | g1rll                          | 0.6                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               | to 261                  |                            |        |         | <b></b>                                           |
|                                                 | Suid Agter Paarl       |                      | -                | -                              | 0.8                                                         | 0.                                 |                                    | 0.0    |                               |                                                               |                                                 |                                                                                |                                               | 0.00                                                        |                                                               |                                                        |            |               |                         |                            |        |         | <b></b>                                           |
|                                                 | Suid Agter Paarl       |                      | g1h20            | g1h20                          | 2.7                                                         | 1.                                 | 6 0.4                              | 0.0    |                               |                                                               |                                                 |                                                                                | 40                                            | 0.00                                                        |                                                               |                                                        |            | 540?          | to 506                  |                            |        |         | <b> </b>                                          |
| Bvii8<br>Bvii12                                 |                        |                      |                  | dummy                          | +                                                           | 3.4                                |                                    |        | 3.4<br>0.0                    | 3.4                                                           |                                                 |                                                                                | 540                                           | 0.00                                                        |                                                               |                                                        |            | p40?          |                         |                            |        |         | <u> </u>                                          |
| BVII12<br>Biv2                                  |                        |                      |                  | dummy                          |                                                             | <b>2.5</b> 5.1                     | 9                                  |        | 0.0<br>8.4                    | 2 5                                                           | 3.9                                             |                                                                                | 544 563                                       | 0.00                                                        |                                                               | 3.9                                                    |            | 544           | 1 =                     | 63g1rlltdd                 | 18.8   | 0.20    | DBrood                                            |
| Biv2<br>Biv2                                    |                        |                      |                  | +                              |                                                             | 2.5 5.                             | 5                                  |        | 0.4                           | 2.5                                                           | 2.1                                             |                                                                                | 565                                           | 0.00                                                        |                                                               | 2.1                                                    |            | 544           |                         | 65g1rlltdd                 | 18.8   |         | 1PlatKf                                           |
|                                                 |                        |                      |                  |                                | 1                                                           |                                    |                                    |        |                               |                                                               |                                                 |                                                                                |                                               |                                                             |                                                               | Z.1                                                    | 1          |               |                         | oggrintuu                  | 10.0   | 0.11    |                                                   |
|                                                 | Losses                 |                      |                  |                                |                                                             | 6.3                                |                                    |        | 6.3                           | 6.3                                                           |                                                 |                                                                                | 543                                           | 0.00                                                        | 6.325                                                         |                                                        |            | 530/532/53    | 9/543                   |                            |        |         |                                                   |

### 4.4 Farm dam capacities

In WAAS, the farm dam capacities in the catchments were estimated from records for individual dams from the DWA dam safety database and, for the smaller dams, by using a relationship between the surface area of the dam and the dam volume.

The farm dam volumes downstream of Misverstand were not estimated. As part of this study the farm dam capacities downstream of Misverstand were estimated using the dam safety database, some dam volumes were adjusted, and the individual farm dams were aggregated using the finer spatial resolution required by the EWR sub-catchments. If both the WAAS and the current study are assumed to use the same total storage downstream of Misverstand, then the reworked farm dam storages in the Berg River from the current study are 100.9 million m<sup>3</sup> as opposed to the 97.2 million m<sup>3</sup> estimated previously.

Details of the farm dam capacity estimates are included in Table 9.

#### 4.5 Losses

Transmission losses were determined for the drier lower reaches of the Berg River downstream of Misverstand Dam by estimating the area of the river channel and of the riparian vegetation and applying an evaporation loss based on pan evaporation data. In the case of the river itself, the river width was assumed to be 20 metres in summer and the mean annual evaporation at station G1E002S01 (see **Table 10**) was factored by 0.8 to allow for the reduction in evaporation that takes place over large water bodies. In the case of the riparian vegetation, it was assumed that this would extend 20 metres on each bank and a crop factor of 0.65 was applied to the evaporation to take into account the evapotranspiration from riparian vegetation (see **Table 11**). The monthly losses determined for each of the reaches are summarised in **Table 12**.

|                                                       |                                     |                         |                  |                                      |             |          |                         |                      | Farm dam vo                                                       | olumes (million m <sup>3</sup> ) |                                                         |                                                                |
|-------------------------------------------------------|-------------------------------------|-------------------------|------------------|--------------------------------------|-------------|----------|-------------------------|----------------------|-------------------------------------------------------------------|----------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
|                                                       | Catch                               | nment Descripti         | on               |                                      |             |          | Farm dam capacities dis | aggregated into fine | r resolution                                                      |                                  |                                                         |                                                                |
| Subcatch                                              | ments from curre                    | ent study               | WAAS subca       | tchments                             | Farm dam ca |          |                         |                      | n the same elevation and full supply<br>urface area and capacity) | Co                               | mparable dam volumes from the WAA                       | S study                                                        |
| Environmental<br>Node at outlet<br>of<br>subcatchment | Irrigation Board                    | Note                    | WAAS WRYM<br>INC | WAAS<br>WRYM INC<br>for Farm<br>Dams | node        | volume   | e node                  | сар                  | factor                                                            | Storages (WAAS)                  | Storage for region in Lower Berg<br>not covered in WAAS | Storage for same region as covered in<br>the Feasibility Study |
| Bi1                                                   | Main Berg                           |                         | g1h028           | g1h028                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bii1                                                  | Main Berg                           |                         | Sout R           | Sout R                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
|                                                       |                                     |                         | g1r02/           | g1r02/                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Biii2                                                 | Main Berg                           |                         | g1hwhc           | g1hwhc                               | 210         | 0        | 210                     | 0.2                  | 0                                                                 | 0.2                              |                                                         |                                                                |
| Biii3                                                 | Main Berg                           |                         | g1h20            | g1h20                                | 216         | 3        | 216                     | 15                   | 20%                                                               |                                  |                                                         |                                                                |
| Biii4                                                 | Main Berg                           |                         | g1h08            | g1h08                                | 102         | 15       | 102                     | 15                   | 97%                                                               | 15.0                             |                                                         |                                                                |
| Biii5<br>Biv1                                         | Main Berg<br>Main Berg              |                         | g1h35<br>g1rlltd | g1h35<br>g1rlltd                     | 374<br>370  | 6<br>1.9 | 147<br>147              | 14<br>14             | 40%<br>14%                                                        |                                  |                                                         |                                                                |
| Biv1<br>Biv3                                          | Main Berg                           |                         | g1rlltd          | g1rlltd                              | 370         | 1.5      | 147                     | 14                   | 14/0                                                              |                                  |                                                         |                                                                |
| Biv4                                                  | - main beig                         |                         | STILL            | g1h029                               | 373         | 9        | 147                     | 14                   | 68%                                                               | 13.7                             |                                                         |                                                                |
| Biv4                                                  | Main Berg                           |                         | g1rlltd          | g1rlltd                              |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Biv5                                                  | Main Berg                           |                         | g1h03            | g1h03                                | 208         | 1        | 208                     | 1                    | 100%                                                              | 1.0                              |                                                         |                                                                |
| Biv5                                                  | Main Berg                           |                         | g1whc            | g1whc                                | 350         | 0        | 208                     | 1                    | 30%                                                               |                                  |                                                         |                                                                |
| Bvii10                                                | Main Berg                           |                         | g1h36t           | g1h36t                               | 218         | 10       | 218                     | 29                   | 36%                                                               |                                  |                                                         |                                                                |
| Bvii11                                                | Main Berg                           |                         | g1rll            | g1rll                                | 220         | 6.3      | 220                     | 5.5                  | 116%                                                              | 5.5                              |                                                         |                                                                |
| D                                                     | Main Dava                           |                         | g1h19/           | g1h19/                               | 213         | 4        | 212                     | 4.1                  | 1079/                                                             |                                  |                                                         |                                                                |
| Bvii2<br>Bvii3                                        | Main Berg<br>Main Berg              |                         | g1hsup<br>g1h36t | g1hsup<br>g1h36t                     | 355         | 2        | 213<br>218              | 4.1 29               | 107%<br>8%                                                        | 4.1                              |                                                         |                                                                |
| Bvii4                                                 | Main Berg                           |                         | g1h36t           | g1h36t                               | 358         | 4        | 218                     | 29                   | 13%                                                               |                                  |                                                         |                                                                |
| Bvii5                                                 | Main Berg                           |                         | g1h36t           | g1h36t                               | 362         | 13       | 218                     | 29                   | 44%                                                               | 28.8                             |                                                         |                                                                |
| Bvii6                                                 | Main Berg                           |                         | g1rlltd          | g1rlltd                              | 147         | 1        |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bvii7                                                 | Main Berg                           |                         | g1rlltd          | g1rlltd                              | 379         | 1.3      | 147                     | 14                   | 9%                                                                |                                  |                                                         |                                                                |
| Bvii8                                                 | Main Berg                           |                         | Misv             | g1rlltd                              | na          | 0        |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bvii9                                                 | Main Berg                           | On Berg R, u/s<br>Paarl | g1h20            | g1h20                                | 353         | 11       | 216                     | 15                   | 72%                                                               | 15.3                             |                                                         |                                                                |
| Bviii2                                                | Main Berg                           |                         | g1h36t           | g1h36t                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bviii3                                                | Main Berg                           |                         | g1h36t           | g1h36t                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bviii4<br>Bviii8                                      | Main Berg<br>Main Berg              | see Noord<br>Agter P    | g1h36t<br>g1h04  | g1h36t<br>g1h04                      |             | 0        |                         |                      |                                                                   |                                  |                                                         |                                                                |
| na-export                                             | Noord Agter<br>Paarl                | Agter F                 | -                | -                                    | na          | 0        |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bvii10                                                |                                     | On Berg R, d/s<br>Krom  |                  | g1h36t                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bvii5                                                 | Noord Agter<br>Paarl                | -                       | g1h36t           | g1h36t                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| na-export                                             | Perdeberg IB                        |                         | -                | -                                    |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Bvii5                                                 | Perdeberg IB                        |                         | g1h36t           | g1h36t                               |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
|                                                       | Riebeek Kasteel                     |                         | g1rll            | g1rll                                |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
|                                                       | Riebeek West IB                     |                         | g1rlltd          | g1rlltd                              |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
|                                                       | Riebeek West IB<br>Suid Agter Paarl |                         | g1rll<br>-       | g1rll<br>-                           |             |          |                         | +                    | +                                                                 |                                  |                                                         |                                                                |
|                                                       | Suid Agter Paarl                    |                         | -<br>g1h20       | -<br>g1h20                           |             |          |                         | +                    |                                                                   |                                  |                                                         |                                                                |
| Bvii8                                                 | and Ageer I dall                    |                         | 81120            | 51120                                |             |          |                         | 1                    |                                                                   |                                  |                                                         |                                                                |
| Bvii12                                                |                                     |                         |                  | dummy                                |             |          |                         | 1                    |                                                                   |                                  |                                                         |                                                                |
| Biv2                                                  |                                     |                         |                  |                                      | 366&365     | 12.43    | 147                     | 14                   | use known area<br>Say A=c*V^0.66                                  |                                  | 13.66                                                   |                                                                |
| Biv2                                                  |                                     |                         |                  |                                      |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
|                                                       | Losses                              |                         |                  |                                      |             |          |                         |                      |                                                                   |                                  |                                                         |                                                                |
| Total                                                 | -                                   |                         | -                | -                                    |             | 100.9    |                         |                      |                                                                   | 83.6                             | 13.7                                                    | 97.2                                                           |

23

#### Table 10: Average Monthly Evaporation (mm) at G1E002:S01

| Gauge     | Period    | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Total |
|-----------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| G1E002S01 | 1972-2007 | 191 | 248 | 297 | 316 | 271 | 235 | 148 | 85  | 58  | 59  | 78  | 111 | 2102  |

# Table 11: Reach characteristics used to determine the transmission losses downstream of Misverstand Dam

|                   | Reach characteristics for determining transmission losses |              |                       |                                                                     |                                          |                                                                                        |                               |  |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------|--------------|-----------------------|---------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Upstream<br>point | Downstream<br>point                                       | Reach<br>(m) | River<br>width<br>(m) | Factor to<br>convert<br>evaporation to<br>free-water<br>evaporation | Riparian<br>Vegetation zone<br>width (m) | Factor to convert<br>evaporation to<br>evapotranspiration<br>of riparian<br>vegetation | Proposed<br>Channel<br>number |  |  |  |  |  |  |  |  |
| Misverstand       | Steenboksfontein                                          | 47000        | 20                    | 0.8                                                                 | 40                                       | 0.65                                                                                   | 578                           |  |  |  |  |  |  |  |  |
| g1h013            | Misverstand                                               | 18000        | 20                    | 0.8                                                                 | 40                                       | 0.65                                                                                   | 539                           |  |  |  |  |  |  |  |  |
| g1h036            | G1H079                                                    | 13910        | 20                    | 0.8                                                                 | 40                                       | 0.65                                                                                   | 512                           |  |  |  |  |  |  |  |  |
| G1H079            | Biv1                                                      | 18895        | 20                    | 0.8                                                                 | 40                                       | 0.65                                                                                   | 530                           |  |  |  |  |  |  |  |  |
| Biv1              | G1H013                                                    | 16195        | 20                    | 0.8                                                                 | 40                                       | 0.65                                                                                   | 532                           |  |  |  |  |  |  |  |  |

#### Table 12: Reach Losses downstream of Misverstand Dam

| Upstream<br>point | Downstream<br>point | Units               | Oct  | Nov  | Dec  | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  |      | Proposed<br>Channel<br>number |
|-------------------|---------------------|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------------------|
|                   | Steenboksfo         |                     |      |      |      |      |      |      |      |      |      |      |      |      |      |                               |
| Misverstand       | ntein               | m³/s                | 0.14 | 0.19 | 0.22 | 0.23 | 0.22 | 0.17 | 0.11 | 0.06 | 0.04 | 0.04 | 0.06 | 0.08 |      | 578                           |
| g1h013            | Misverstand         | m³/s                | 0.05 | 0.07 | 0.08 | 0.09 | 0.08 | 0.07 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |      | 539                           |
| g1h036            | G1H079              | m³/s                | 0.04 | 0.06 | 0.06 | 0.07 | 0.06 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 |      | 512                           |
| G1H079            | Biv1                | m³/s                | 0.06 | 0.08 | 0.09 | 0.09 | 0.09 | 0.07 | 0.05 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 |      | 530                           |
| Biv1              | G1H013              | m³/s                | 0.05 | 0.06 | 0.08 | 0.08 | 0.08 | 0.06 | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 |      | 532                           |
| т.                |                     | m³/s                | 0.34 | 0.46 | 0.53 | 0.56 | 0.53 | 0.42 | 0.27 | 0.15 | 0.11 | 0.10 | 0.14 | 0.20 |      |                               |
| IC                | otal                | Mill m <sup>3</sup> | 0.91 | 1.19 | 1.42 | 1.51 | 1.30 | 1.13 | 0.71 | 0.41 | 0.28 | 0.28 | 0.37 | 0.53 | 10.0 |                               |

# 5 Effect of the Proposed Preliminary Reserve on the Yield of the Berg River Dam and Supplement Scheme

### 5.1 Synopsis

The relative effects on total system yield of alternative approaches to the simulated operation of the proposed Preliminary Reserve for the Berg River Dam Supplement Scheme were analysed as part of this study. Depending on the approach, the historical firm yield of the total system differs over a range of -4 to +6 million m<sup>3</sup>/a relative to the historical firm yield obtained in the original Berg River Dam Feasibility Study. In this study the more conservative approach of adjusting the Reserve release volumes on a monthly basis was adopted. The relationship between upstream streamflow and abstraction to Berg River Dam that was developed is presented in **Table 13**.

 Table 13:
 "Diversion" function for EWR Operating Rule at Supplement Scheme

| Component                                        |      | ge mor<br>nflow (r |      | mp rate | e (m³/s) | for a give | en averaç | je     |
|--------------------------------------------------|------|--------------------|------|---------|----------|------------|-----------|--------|
| Average monthly streamflow (m <sup>3</sup> /s)   | 0.00 | 0.90               | 1.60 | 4.00    | 6.50     | 7.50       | 10.00     | 999.00 |
| Average monthly pumping rate (m <sup>3</sup> /s) | 0.00 | 0.55               | 0.75 | 1.30    | 3.10     | 3.30       | 3.40      | 3.40   |

### 5.2 Introduction

In the original Feasibility Study for the Berg River Dam and the Supplement Scheme the EWRs were not specified using flow duration curves, but as a set of average releases for each month of the year (see **Table 14**). The river channel immediately downstream of the Berg River Dam was considered to be in a much better state (Ecological Class "C") than the remaining reaches at and downstream of the Supplement Site, which had little indigenous vegetation and was primarily used as a conduit to distribute irrigation water. The required streamflows downstream of the Berg River Dam were allowed to decrease during drought conditions (about 8 times in 61 years). However, the environmental streamflow conditions at the Supplement Scheme were assumed to be close to "drought" conditions already and no additional allowance was made to reduce these requirements during drought periods.

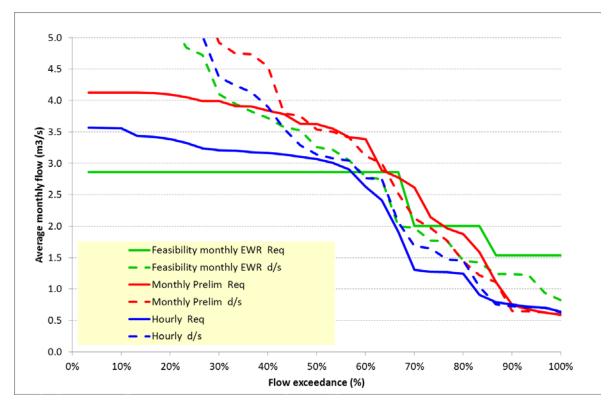
| Table 14: | EWR at Supplement Si | ite from the Bera | River Dam F | easibility Study |
|-----------|----------------------|-------------------|-------------|------------------|
|           | =                    |                   |             |                  |

| Month | Berg River Dam<br>baseflow (m <sup>3</sup> /s) | Supplement<br>baseflow (m <sup>3</sup> /s) | Incremental baseflow<br>(m <sup>3</sup> /s) |
|-------|------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Jan   | 0.300                                          | 0.460                                      | 0.160                                       |
| Feb   | 0.300                                          | 0.460                                      | 0.160                                       |
| Mar   | 0.300                                          | 0.460                                      | 0.160                                       |
| Apr   | 0.500                                          | 1.000                                      | 0.500                                       |
| May   | 1.000                                          | 2.000                                      | 1.000                                       |
| Jun   | 1.600                                          | 2.860                                      | 1.260                                       |
| Jul   | 1.600                                          | 2.860                                      | 1.260                                       |
| Aug   | 1.600                                          | 2.860                                      | 1.260                                       |
| Sep   | 1.200                                          | 2.860                                      | 1.660                                       |
| Oct   | 0.800                                          | 1.540                                      | 0.740                                       |
| Nov   | 0.500                                          | 0.610                                      | 0.110                                       |
| Dec   | 0.400                                          | 0.460                                      | 0.060                                       |

Some time after the completion of the Feasibility Study, the EWRs specified in the Preliminary Reserve were defined using monthly flow-duration curves. To determine the ecological requirements the relative exceedence of the natural streamflows for a particular month needs to be known (usually determined using streamflows measured at relatively natural indicator sites within the catchment) and this is used to "look up" the environmental streamflow with the same exceedence. Practically, these requirements are difficult to implement, as the natural flow is the average value for the entire month, which is not known until the month is complete. In practice, the environmental requirements can be implemented using a shorter time period, where the average "natural" streamflows for the preceding hour, day or maybe week are used to determine the environmental streamflow requirement for the next period.

To assess the effect of the operating rule on the yield of the system, the volume of water that could be pumped into the Berg River Dam over the historical critical drawdown period (from 1 November 1968 to 31 May 1974) was analysed for different scenarios. The proposed Supplement Scheme will normally operate in the winter months, from May to October, unless there are exceptionally heavy summer rains resulting in significantly elevated streamflows; therefore, for this analysis the summer periods were ignored.

The winter EWRs corresponding to


- the Feasibility Study
- the Preliminary Reserve (using a monthly interval)
- the Preliminary Reserve (using an hourly interval)

are presented as solid green, red and blue lines, respectively, in **Figure 13.** The actual simulated downstream flows for each of these scenarios are presented using the corresponding dashed line.

The EWRs downstream of the Supplement Scheme are provided partly from the environmental releases from Berg River Dam and partly from unregulated accruals from tributaries located downstream of Berg River Dam and Wemmershoek Dam. Because unregulated streamflows contribute a large portion of the EWRs, the streamflows occurring downstream of the Supplement Site can differ significantly from the environmental requirements. The streamflows can be less than the requirement even if no pumping takes place at the Supplement Scheme, because the water simply is not available at the site - as in the case of the Feasibility Study EWR which exceeded the available streamflow about 30% of the time. The streamflows can also exceed the requirements at the site, as happens at least 45% of the time in the various scenarios, because the streamflows exceed the abstraction capacity of the Supplement Scheme. These exceedences occur throughout the winter, not just when the Berg River Dam spills; therefore, the Supplement Site gets the benefit of reliable baseflows from the Berg River Dam plus variability introduced from accruals downstream of the major dams.

It should be noted that the water requirement of the Preliminary Reserve (determined on a monthly basis) is larger than the water requirement of the original Feasibility Study requirement about 60% of the time and could be expected to decrease the system yield. However, if the Preliminary Reserve is modelled on an hourly basis, the total modelled EWR is reduced. The hourly natural streamflows are more variable than the monthly streamflows, some being higher than the monthly average and some lower. The EWRs of the lower streamflows are significantly less than the average flows and this is not sufficiently offset by an increased EWR for the higher natural streamflows. Consequently, **Figure 13** shows that the water flowing downstream of the Supplement Scheme for the Preliminary EWR when evaluated *hourly* (blue dashed line) is closer to that of the original Feasibility Requirement

(green dashed line) than the water flowing downstream for the Preliminary EWR when evaluated *monthly*.



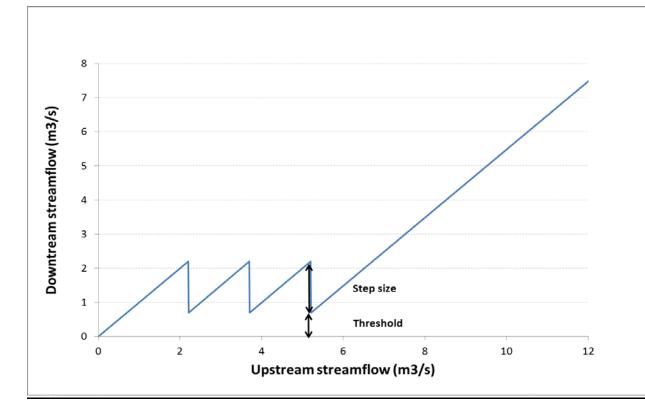
# Figure 13: Comparison of EWRs and simulated average monthly streamflows from May to October downstream of the Supplement Site

# 5.3 Comparison of streamflows downstream of the Supplement Scheme and effects of different operating rules on yield

A spreadsheet was used to model the operation of the Supplement Scheme on an hourly basis over the historical critical drawdown period of the system - from 1 November 1968 to 31 May 1974. The "HFY" from the Supplement Scheme was taken as the volume of water that could be pumped into the Berg River Dam over the historical critical drawdown period for each of the different scenarios. This approach relies on water being pumped from Berg River Dam into Theewaterskloof Dam (with its larger relative storage and greater ratio of storage to mean annual runoff) to minimise spillage from Berg River Dam.

The results are summarized in row "n" of **Table 16.** Using the EWR from the Feasibility Study, the Berg River Dam and Supplement increase the "HFY" of the system by 92 million  $m^3/a$ . If the EWR is changed to the Preliminary Reserve and this is implemented on a monthly basis then the "HFY" of the system reduces to 88 million  $m^3/a$ . Applying the Preliminary Reserve on an hourly basis would actually increase the Feasibility Study-related "HFY" to about 94 million  $m^3/a$ .

Another means of implementing the Reserve was also investigated, similar to the "stepped – pumping" method envisaged for the BRVAS. This approach is based on switching on pumps of, say,  $1.5 \text{ m}^3$ /s whenever the streamflow reaches, say,  $2.4 \text{ m}^3$ /s until all the available pumps are operational. This ensures a minimum baseflow thresh hold of 0.7 m<sup>3</sup>/s and the streamflow varies from 0.7 to 2.4 m<sup>3</sup>/s until all the pumps are all operational (see **Figure 14**). For the purposes of this analysis the threshold was increased during the wetter winter months (see **Table 15**) and an abstraction step of


1.5  $m^3$ /s was adopted. This approach increased the yield by a further 4 million  $m^3$ /a to 98 million  $m^3$ /a, as it permits pumping to start a little earlier than if the full baseflow was left before pumping started.

| Table 15: Adopted variable baseflow thresh | old |
|--------------------------------------------|-----|
|--------------------------------------------|-----|

| Month     | May | Jun | Jul | Aug | Sep | Oct |
|-----------|-----|-----|-----|-----|-----|-----|
| Threshold | 0.5 | 1.0 | 1.5 | 1.5 | 1.0 | 0.5 |

Because a large portion of the streamflows is unregulated, the freshets exceeding the abstraction capacity of the Supplement Pumpstation occur throughout the season so that the cumulative streamflows downstream of the pumpstation are fairly similar for the various pumping rules (see **Figure 15**). **Figure 15** shows the cumulative streamflows for each of the five winters in the critical drawdown period. The solid red line is the baseflow EWR (evaluated on a monthly basis) while the red dashed line is the baseflow EWR evaluated on a daily basis. The streamflows downstream of the Supplement Pumpstation exceed the Preliminary Reserve Flow (determined daily) in all years. When compared with the Preliminary Reserve Flow (determined monthly) the streamflows downstream of the Supplement exceed the Preliminary Reserve in most years. In 1969 the streamflows from the variable threshold scenario are about 8 million m<sup>3</sup> less than the Preliminary Reserve (determined monthly) while in the other years the streamflows are greater than the Reserve.

A similar analysis was performed using the WRYM for the longer period from 1928 to 1988 which shows that the annual streamflows downstream of the Supplement Site will normally exceed the baseflow requirements except for the 1:20 year drought - corresponding to a 5% exceedance (see **Table 16**).



# Figure 14: Relationship of upstream streamflow to downstream streamflow assuming a threshold of 0.7 m<sup>3</sup>/s and three pumping steps of 1.5 m<sup>3</sup>/s

# Table 16:Mass balance for the critical period from 1 November 1968 to 31 May 1974 to<br/>determine the effect of operating rules on yield at the Berg River Dam

| Source                                                             |                                   | Row a                  | Feasibility EWR | Preliminary reserve<br>(applied monthly) | Preiminary reserve<br>(applied weekly) | Preliminary reserve<br>(applied hourly) | Stepped (threshold of 0.5,1,1.5,1.5,1,0.5 threshold from May-Oct with 1.5 step) |
|--------------------------------------------------------------------|-----------------------------------|------------------------|-----------------|------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| Initial live storage                                               | <sup>(1)</sup> Mm <sup>3</sup>    | а                      | 127             | 127                                      | 127                                    | 127                                     | 127                                                                             |
| Natural Inflow at G1H004                                           | <sup>(1)</sup> Mm <sup>3</sup>    | b                      | 572             | 572                                      | 572                                    | 572                                     | 572                                                                             |
| Wolwekloof Diversion to Theewaterskloof                            | <sup>(1)</sup> Mm <sup>3</sup>    | С                      | -77             | -77                                      | -77                                    | -77                                     | -77                                                                             |
| High flow (Flood/Freshettes) Environmental Releases                | <sup>(1)</sup> Mm <sup>3</sup>    | е                      | -59             | -59                                      | -59                                    | -59                                     | -59                                                                             |
| High flow summer release                                           | <sup>(1)</sup> Mm <sup>3</sup>    | f                      | 0               | 0                                        | 0                                      | 0                                       | 0                                                                               |
| Summer Release included with Theewaterskloof Dam yield             | <sup>(1)</sup> Mm <sup>3</sup>    | g                      | -50             | -50                                      | -50                                    | -50                                     | -50                                                                             |
| Low Flow Winter Releases                                           | <sup>(1)</sup> Mm <sup>3</sup>    | h                      | -104            | -104                                     | -109                                   | -78                                     | -80                                                                             |
| Nett evaporation                                                   | <sup>(1)</sup> Mm <sup>3</sup>    | i                      | -4              | -4                                       | -4                                     | -4                                      | -4                                                                              |
| Flows pumped from Supplement                                       | <sup>(1)</sup> Mm <sup>3</sup>    | j                      | 102             | 82                                       | 92                                     | 86                                      | 111                                                                             |
| Spill                                                              | <sup>(1)</sup> Mm <sup>3</sup>    | k                      | -2              | -2                                       | -2                                     | -2                                      | -2                                                                              |
| BRD yield                                                          | Mm <sup>3</sup> /a                | I=sum(rows b to i)/5.5 | 74              | 74                                       | 73                                     | 78                                      | 78                                                                              |
| Supplement yield                                                   | Mm <sup>3</sup> /a                | m=sum(rows I to j)/5.5 | 18              | 15                                       | 16                                     | 15                                      | 20                                                                              |
| <sup>(2)</sup> Total BRD + Supplement Yield (after deducting yield | Mm <sup>3</sup> /a                | n=l+m                  | 92              | 88                                       | 89                                     | 94                                      | 98                                                                              |
| included with Theewaterskloof - assuming uniform demand            |                                   |                        |                 |                                          |                                        |                                         |                                                                                 |
| Flow downstream of Supplement (ignoring irrigation                 | <sup>(1)</sup> Mm <sup>3</sup>    | 0                      | 304             | 325                                      | 319                                    | 294                                     | 270                                                                             |
| releases)                                                          |                                   |                        |                 |                                          |                                        |                                         |                                                                                 |
| Flow downstream of Supplement (ignoring irrigation releases)       | <sup>(1)</sup> Mm <sup>3</sup> /a | р                      | 55              | 59                                       | 58                                     | 53                                      | 49                                                                              |

<sup>(1)</sup> Flow over critical period from 1 November 1968 to 31 May 1974

(2) Demand could be up to two million m<sup>3</sup>/a less if the seasonality of urban and agricultural demands on the combined Theewaterskloof Dam / Berg River Dam is taken into account

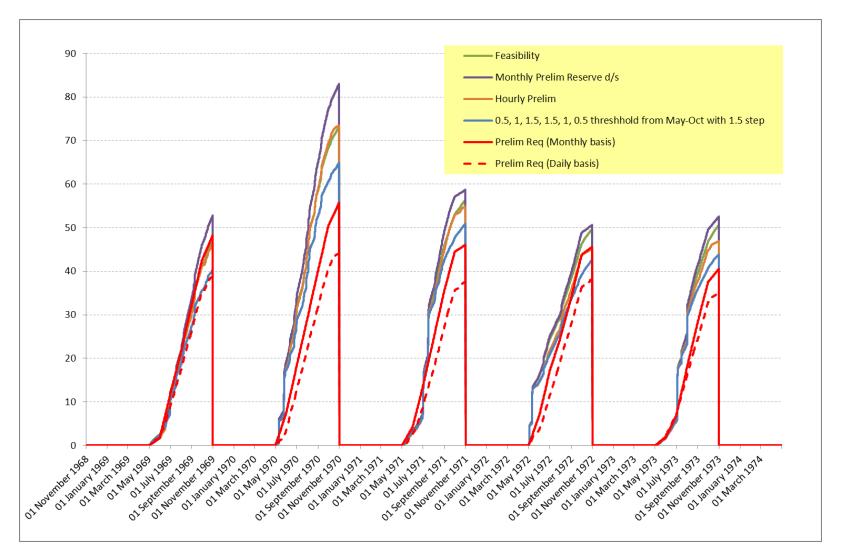



Figure 15: Required baseflows and actual streamflows downstream of the Supplement Scheme for different implementations of the EWR

# Table 17:Comparison of required and modelled streamflows (m³/s) for the period 1928-1988 using<br/>different methods of operating the Supplement Abstraction

|      |                      | _    |      |      |      |      |                    |       |       |       |       |                    |      |       |       |       |       |             | Variable /  | Variable / |
|------|----------------------|------|------|------|------|------|--------------------|-------|-------|-------|-------|--------------------|------|-------|-------|-------|-------|-------------|-------------|------------|
|      | Baseflow requirement |      |      |      |      |      | Feasibility supply |       |       |       |       | Variable threshold |      |       |       |       |       | requirement | Feasibility |            |
|      | May                  | Jun  | Jul  | Aug  | Sep  | Oct  | May                | Jun   | Jul   | Aug   | Sep   | Oct                | May  | Jun   | Jul   | Aug   | Sep   | Oct         | %           | %          |
| 0%   | 1.3                  | 4.3  | 14.1 | 24.7 | 35.0 | 40.8 | 1.4                | 6.8   | 12.0  | 20.1  | 29.8  | 33.1               | 1.7  | 7.4   | 12.5  | 20.6  | 28.1  | 31.9        | 78%         | 96%        |
| 5%   | 1.8                  | 10.6 | 20.7 | 30.6 | 40.4 | 43.4 | 1.7                | 9.0   | 17.1  | 24.8  | 38.3  | 44.6               | 2.1  | 10.0  | 16.1  | 23.5  | 33.3  | 38.6        | 85%         | 84%        |
| 10%  | 2.6                  | 12.0 | 22.0 | 32.0 | 41.7 | 45.1 | 2.3                | 9.5   | 20.8  | 38.0  | 49.0  | 54.3               | 3.0  | 10.7  | 20.3  | 36.5  | 46.9  | 50.9        | 118%        | 93%        |
| 20%  | 4.5                  | 13.8 | 24.3 | 34.5 | 43.7 | 47.7 | 3.3                | 14.7  | 37.3  | 49.9  | 60.0  | 64.4               | 4.0  | 15.4  | 35.4  | 46.3  | 54.1  | 58.4        | 126%        | 91%        |
| 50%  | 7.1                  | 17.3 | 27.3 | 37.7 | 47.5 | 51.9 | 5.4                | 24.0  | 54.1  | 74.3  | 88.1  | 92.5               | 5.3  | 20.6  | 50.5  | 71.3  | 84.7  | 89.1        | 179%        | 97%        |
| 75%  | 7.4                  | 18.0 | 29.0 | 40.0 | 49.4 | 54.3 | 9.9                | 37.3  | 99.1  | 152.9 | 171.6 | 174.9              | 7.4  | 36.3  | 97.2  | 150.2 | 169.1 | 172.9       | 337%        | 99%        |
| 95%  | 7.5                  | 18.2 | 29.3 | 40.3 | 50.6 | 56.3 | 21.9               | 71.8  | 179.6 | 243.3 | 258.5 | 261.2              | 20.8 | 71.4  | 178.4 | 241.3 | 256.6 | 260.2       | 471%        | 100%       |
| 100% | 7.5                  | 18.2 | 29.3 | 40.4 | 50.7 | 56.4 | 34.3               | 135.1 | 250.8 | 363.7 | 390.0 | 398.9              | 33.2 | 132.8 | 248.5 | 361.4 | 387.7 | 394.0       | 698%        | 99%        |